

Rio Tinto Exploration Update – Winu project

6 June 2019

As announced on 27 February 2019¹, Rio Tinto has discovered copper-gold mineralisation at the Winu project in the Yeneena Basin of the Paterson Province in Western Australia. A significant programme of work has continued at the Winu camp in recent months with 180 people now on site and this release provides additional data on the intercepts for the eleven diamond drill holes reflecting drilling to the end of 2018. In addition, some assay data has changed as a result of quality control and assurance activities.

Significant intercepts for the eleven diamond drill holes not previously available in full, as well as all previously reported results, are set out in Table 1 and Table 2 below. Results continue to indicate relatively wide intersections of vein style copper mineralisation associated with gold and silver beneath relatively shallow cover which ranges from 50 to 100 metres. The mineralisation remains open at depth and to the east, north, and south.

Some changes have been made to the assays due to ongoing quality control and assurance procedures, and changes in analytical techniques. A comparison of original and revised intercepts for the affected drill holes are provided in Table 3 and Table 4. This outlines the completed drilling results to the end of 2018.

The next phase of reverse circulation (RC) and diamond drilling is underway to further define the mineralisation extents and continuity, and results will be reported in a subsequent release in Quarter 3, 2019. There are currently eight diamond rigs, three RC rigs, and a waterbore rig drilling at Winu.

Other activity at Winu includes cultural heritage surveys and the commencement of construction of a gravel airstrip for emergency response purposes, given the exploration camp is located approximately 200 kilometres by gravel and sand track from the Great Northern Highway and a seven hour drive from Port Hedland.

While results continue to be encouraging, the exploration project is still at an early stage and drilling to date does not allow sufficient understanding of the mineralised body to assess the potential size or quality of the mineralisation nor to enable estimation of a Mineral Resource. The assessment and interpretation of existing data is ongoing and is being used to help guide drilling in 2019.

Figure 1 shows the location of the Winu project. Figure 2 shows a plan with the location of all drill holes included in this release. Figure 3 provides a representative updated cross section.

Drill hole	Dow	n hole (m)	Down hole	Copper	Gold	Silver	
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)	
RC17PAW0001	70	174	104	0.80	0.33	4.47	
RC17PAW0002	193	204	11	0.47	0.22	2.88	
RC18WIN0002	105	123	18	0.45	0.31	2.80	
RC18WIN0002	158	219	61	0.57	0.52	4.23	

Table 1: Significant mineralised drill hole intercepts with >0.4% Cu or >0.4 g/t Au

¹ Rio Tinto Exploration Update – copper-gold mineralisation discovered in the Paterson Province in the far east Pilbara region of Western Australia" released to ASX on 27 February 2019

Drill hole	Down hole (m)		Down hole	Copper	Gold	Silver
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)
RC18WIN0003	77	148	71	1.02	0.49	5.14
WIDI0007	60	120	60	1.03	1.22	4.30
WINU0001	135	156	21	1.00	0.72	7.58
WINU0001	163	174	11	0.80	0.39	4.81
WINU0003	140	579	439	0.42	0.32	2.45
WINU0003	656	664	8	0.50	0.38	2.23
WINU0003	710	719	9	0.48	0.67	2.19
WINU0004	88	233	145	0.43	0.48	3.09
WINU0006	60	741	681	0.49	0.33	3.17
WINU0007	244	274	30	0.40	0.21	2.40
WINU0007	318	663	345	0.41	0.31	2.68
WINU0008	197	214	17	0.77	0.76	4.56
WINU0009	179	191	12	0.54	0.36	3.75
WINU0009	604	619	15	0.76	0.25	4.71
WINU0010	122	135	13	0.71	0.54	3.66
WINU0010	222	257	35	0.97	0.46	6.50
WINU0011	276	775	499	0.40	0.20	2.33
WINU0012	95	241	146	0.43	0.39	2.81
WINU0013	91	160	69	0.51	0.26	3.94
WINU0013	215	687	472	0.43	0.35	2.69
WINU0014	78	99	21	0.41	0.11	2.30
WINU0014	110	121	11	0.45	0.19	1.91
WINU0014	185	377	192	0.40	0.37	2.69
WINU0014	450	465	15	1.08	0.49	5.10
WINU0015	100	211	111	0.41	0.22	2.53
WINU0015	226	263	37	0.69	0.23	2.41
WINU0019	100	204	104	0.57	0.56	3.37
WINU0024	97	258	161	0.57	0.46	3.25
Drilling results r	not previous	ly available in	full at time of 27 Fe	ebruary 2019	release	
WINU0017	70	526	456	0.43	0.60	2.56
WINU0018	128	313	185	0.51	0.37	3.00
WINU0018	383	423	40	0.46	0.23	2.66
WINU0020	126	131	5	0.48	0.43	1.00
WINU0020	189	434	245	0.47	0.40	3.32
WINU0026	116	145	29	0.16	0.54	1.55
WINU0026	231	258	27	0.46	0.30	2.70
WINU0026	335	340	5	0.03	0.44	0.18

Drill hole	Dow	n hole (m)	Down hole	Copper	Gold	Silver
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)
WINU0028	187	260	73	0.49	0.27	3.33
WINU0028	289	294	5	0.13	0.41	0.71
WINU0028	367	373	6	0.52	0.67	2.55
WINU0028	395	406	11	0.48	0.15	3.13
WINU0028	507	512	5	0.03	1.15	0.24
WINU0031	75	93	18	0.07	0.49	1.37
WINU0031	105	118	13	0.45	0.81	2.82
WINU0031	123	131	8	0.11	0.56	1.33
WINU0031	256	261	5	0.13	0.45	1.80
WINU0031	381	472.1	91.1	0.58	0.21	3.28
WINU0034	254	303.6	49.6	0.42	0.13	1.30
WINU0036	128	147	19	0.27	0.47	0.95

(Drill holes that did not intersect significant mineralisation at 0.4% Cu or 0.4 g/t Au cut-off include RC18WIN0001, WB18WIN0001, WINU0029, WINU0032 and WINU0035.)

Drill hole	Down hole (m)		Down hole	Copper	Gold	Silver
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)
RC17PAW0001	70	174	104	0.80	0.33	4.47
RC17PAW0001 incl	72	83	11	2.24	0.64	8.25
RC17PAW0001 incl	143	174	31	1.13	0.37	6.83
RC17PAW0002	71	79	8	0.77	0.39	3.67
RC17PAW0002	98	144	46	0.44	0.30	2.46
RC17PAW0002 incl	98	120	22	0.51	0.29	2.47
RC17PAW0002	173	182	9	0.44	0.60	2.06
RC17PAW0002	193	204	11	0.47	0.22	2.88
RC18WIN0001	118	133	15	0.24	0.18	0.76
RC18WIN0001	190	204	14	0.24	0.23	1.08
RC18WIN0002	105	123	18	0.45	0.31	2.80
RC18WIN0002	158	219	61	0.57	0.52	4.23
RC18WIN0003	77	148	71	1.02	0.49	5.14
RC18WIN0003 incl	77	90	13	2.07	0.52	5.52
RC18WIN0003 incl	104	136	32	1.15	0.53	6.59
WB18WIN0002	98	111	13	0.20	0.12	1.40
WB18WIN0002	130	142	12	0.27	0.20	1.76
WIDI0007	60	120	60	1.03	1.22	4.30
WIDI0007 incl	82	102	20	1.05	1.96	5.33
WIDI0007 incl	105	120	15	1.94	0.85	4.63
WINU0001	75	481	406	0.29	0.24	1.90
WINU0001 incl	135	156	21	1.00	0.72	7.58
WINU0001 incl	163	174	11	0.80	0.39	4.81
WINU0003	140	579	439	0.42	0.32	2.45
WINU0003 incl	157	174	17	0.81	0.36	5.01
WINU0003 incl	194	206	12	0.57	0.59	3.44
WINU0003 incl	299	306	7	0.98	0.54	4.40
WINU0003 incl	315	321	6	2.78	0.78	17.31
WINU0003 incl	452	481	29	0.76	0.40	3.84
WINU0003	656	664	8	0.50	0.38	2.23
WINU0003	710	719	9	0.48	0.67	2.19
WINU0004	88	233	145	0.43	0.48	3.09
WINU0004 incl	88	94	6	4.69	2.52	26.41
WINU0006	60	743	683	0.48	0.33	3.17
WINU0007	211	218	7	0.43	0.12	3.13

Table 2: Significant mineralised drill hole intercepts with Cu >0.2% or Au >0.2g/t.

Drill hole	Dowr	ı hole (m)	Down hole	Copper	Gold	Silver	
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)	
WINU0007	244	274	30	0.40	0.21	2.40	
WINU0007	278	283	5	0.42	0.17	3.13	
WINU0007	285	292	7	0.61	0.20	3.15	
WINU0007	318	663	345	0.41	0.31	2.68	
WINU0007 incl	338	348	10	1.66	0.27	11.34	
WINU0007 incl	417	430	13	0.99	0.19	6.80	
WINU0007 incl	529	546	17	0.37	1.43	2.26	
WINU0007 incl	576	590	14	0.65	0.19	3.13	
WINU0008	96	358	262	0.27	0.30	1.61	
WINU0008 incl	197	214	17	0.77	0.76	4.56	
WINU0009	73	83	10	0.24	0.04	0.76	
WINU0009	104	326	222	0.20	0.18	1.40	
WINU0009 incl	113	120	7	1.06	0.37	3.22	
WINU0009 incl	165	172	7	0.53	0.59	3.44	
WINU0009 incl	179	191	12	0.54	0.36	3.75	
WINU0009	338	662	324	0.25	0.16	1.48	
WINU0009 incl	344	349	5	0.86	0.27	3.79	
WINU0009 incl	604	619	15	0.76	0.25	4.71	
WINU0010	109	474	365	0.27	0.24	1.64	
WINU0010 incl	122	135	13	0.71	0.54	3.66	
WINU0010 incl	222	257	35	0.97	0.46	6.50	
WINU0011	112	130	18	0.22	0.74	0.81	
WINU0011	276	775	499	0.40	0.20	2.33	
WINU0011 incl	556	570	14	1.25	0.52	8.66	
WINU0011 incl	627	648	21	0.98	0.28	5.88	
WINU0011 incl	696	719	23	1.03	0.24	4.37	
WINU0012	94	396	302	0.25	0.27	1.55	
WINU0012	95	241	146	0.43	0.39	2.81	
WINU0013	91	160	69	0.51	0.26	3.94	
WINU0013	215	687	472	0.43	0.35	2.69	
WINU0014	78	99	21	0.41	0.11	2.30	
WINU0014	110	121	11	0.45	0.19	1.91	
WINU0014	161	170	9	0.46	0.29	2.73	
WINU0014	185	377	192	0.40	0.37	2.69	
WINU0014	399	408	9	0.51	0.29	2.49	
WINU0014	450	465	15	1.08	0.49	5.10	
WINU0015	94	496	402	0.24	0.18	1.18	

Drill hole	Dowr	n hole (m)	Down hole	Copper	Gold	Silver
	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)
WINU0015	100	211	111	0.41	0.22	2.53
WINU0015	226	263	37	0.69	0.23	2.41
WINU0019	100	204	104	0.57	0.56	3.37
WINU0024	97	258	161	0.57	0.46	3.25
WINU0024 incl	97	117	20	1.01	1.10	3.78
WINU0024 incl	191	226	35	0.74	0.39	4.64
Drilling results no	ot previously a	available in f	ull at time of 27 Fe	bruary 2019	release	
WINU0017	70	526	456	0.43	0.60	2.56
WINU0018	71	423	352	0.35	0.27	2.17
WINU0020	105	434	329	0.39	0.33	2.70
WINU0020	480	489	9	0.05	0.44	0.33
WINU0026	108	146	38	0.16	0.44	1.60
WINU0026	207	215	8	0.26	0.23	1.15
WINU0026	231	258	27	0.46	0.30	2.70
WINU0026	295	302	7	0.14	0.24	0.68
WINU0026	335	340	5	0.03	0.44	0.18
WINU0028	86	92	6	0.01	0.37	0.74
WINU0028	119	125	6	0.01	0.25	0.68
WINU0028	178	294	116	0.35	0.22	2.30
WINU0028	367	422	55	0.31	0.20	1.85
WINU0028	507	512	5	0.03	1.15	0.24
WINU0029	225	231	6	0.08	0.26	0.42
WINU0031	71	159	88	0.15	0.35	1.68
WINU0031	214	291	77	0.11	0.20	0.74
WINU0031	312	322	10	0.14	0.55	1.03
WINU0031	343	476	133	0.46	0.18	2.82
WINU0034	174	181	7	0.23	0.14	0.88
WINU0034	203	209	6	0.22	0.05	0.37
WINU0034	251	303.6	52.6	0.40	0.14	1.24
WINU0036	121.35	148	26.65	0.23	0.37	0.97
WINU0036	171.7	183	11.3	0.13	0.26	0.55

(Drill holes that did not intersect significant mineralisation at 0.2% Cu or 0.2 g/t Au cut-off include WINU0032 and WINU0035.)

	Drill hole	Down hole (m)		Down hole	Copper	Gold	Silver	
	Drin noie	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)	
Original	RC17PAW0001	70	174	104	0.80	0.28	4.35	
Updated	RC17PAW0001	70	174	104	0.80	0.33	4.47	
Original	RC17PAW0002	193	204	11	0.47	0.21	2.60	
Updated	RC17PAW0002	193	204	11	0.47	0.22	2.88	
Original	WINU0006	68	809	741	0.45	0.52	2.94	
Updated	WINU0006	60	741	681	0.49	0.33	3.17	

 Table 3: Updated significant mineralised drill hole intercepts >0.4% Cu or >0.4 g/t Au

Table 4: Updated significant mineralised drill hole intercepts >0.2% Cu or >0.2 g/t Au

	Drill hole	Down h	ole (m)	Down hole	Copper	Gold	Silver	
	Drii noie	From	То	length (m)	(Cu %)	(Au g/t)	(Ag g/t)	
Original	RC17PAW0001	70	174	104	0.80	0.28	4.35	
Updated	RC17PAW0001	70	174	104	0.80	0.33	4.47	
Original	RC17PAW0002	71	79	8	0.74	0.31	3.23	
Updated	RC17PAW0002	71	79	8	0.77	0.39	3.67	
Original	RC17PAW0002	98	144	46	0.44	0.29	2.21	
Updated	RC17PAW0002	98	144	46	0.44	0.30	2.46	
Original	RC17PAW0002	173	182	9	0.44	0.53	1.80	
Updated	RC17PAW0002	173	182	9	0.44	0.60	2.06	
Original	RC17PAW0002	193	204	11	0.47	0.21	2.60	
Updated	RC17PAW0002	193	204	11	0.47	0.22	2.88	
Original	WINU0006	46	809	763	0.44	0.65	2.88	
Updated	WINU0006	60	743	683	0.48	0.33	3.17	

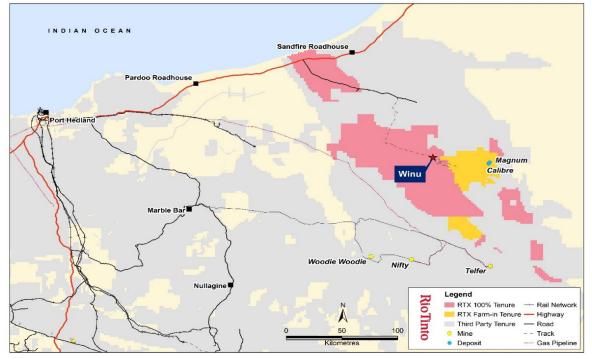


Figure 1: Location map of the Winu project

Figure 2: Drill collar location plan for Winu with section line location.

(Abandoned drill holes are not displayed.)

Figure 3: Cross section through Winu mineralisation

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Dr Julian Verbeek who is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity to which he is undertaking to qualify as a competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

This report also refers to information previously reported in a report entitled "Rio Tinto Exploration Update – copper-gold mineralisation discovered in the Paterson Province in the far east Pilbara region of Western Australia" released to the ASX on 27 February 2019, and available on www.riotinto.com. There is no new information or data that materially affects the information included in the original market announcement, with the exception of the updated assays and additional assay data noted in this release.

Dr Julian Verbeek is a full-time employee of Rio Tinto Exploration and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Winu Project: JORC Table 1

The following table provides a summary of important assessment and reporting criteria used at the Winu project for the reporting of Exploration Results in accordance with the Table 1 checklist in *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition).* Criteria in each section apply to all preceding and succeeding sections.

Criteria	Commentary
Sampling techniques	• Reverse circulation drilling samples were collected from a cone split on the cyclone on a 1-m interval. The sample consisted of the 10% of the drilled metre and its weight varied from 2 to 5 kg. Heavy samples were split manually using a single tier riffle splitter to produce a manageable sample weight. PQ and HQ diamond core was drilled on a 6-m run. The core was cut using an automated core-cutter and sample was collected on a 1-m interval half core.
Drilling techniques	 The drilling consisted of reverse circulation with face sampling bit and triple tubed diamond drilling from surface. The drill holes were generally cased from 30 m progressing from PQ to HQ at 160 m on average; however, exact depths vary from hole to hole. The core was oriented using the ACT III RD tool. At the end of each run, the low side of the core was marked by the drillers and this was used at the site for marking the whole drill core with a reference line.
Drill sample recovery	 Core recovery was measured and recorded continuously from the start of casing to the end of the hole for every drill hole. Each run of 6 m length was marked by a core block which provided the depth, the core drilled and the core recovered. Generally the core recovery was >99%. RC samples were weighted, the hole was flushed after each 1m sample and the sample weights were compared to identify any loss. Generally, the sample weights were comparable.
Logging	 Detailed descriptions of core were logged qualitatively for lithological composition and texture, structures, veining and sulphide composition. In addition, a quantitative estimate was also done for some minerals including sulphides. Structural and geotechnical measurements were also recorded and uploaded into acQuire. All the drilled holes were logged before sampling. The core was photographed both dry and wet inside the core trays. The logging of the RC chips was done after sieving and washing of the material collected from the cyclone.
Sub-sampling techniques and sample preparation	 Diamond core was sawn into two, and half was collected in a bag and submitted for analysis, the other half was kept in the tray and stored. The core was sampled at 1m intervals with breaks for major geological changes. Intervals generally range from 0.5 m to 1 m. The diamond half core and RC samples were sent to an ALS Limited laboratory, where they were dried and crushed to 2 mm with 70% pass and then split using a rotary splitter to produce a 750 g sub-sample. The crushed sub-sample was pulverised with 85% passing 75 µm using a LM2 mill and a 30 to 50 g sample taken for analysis. A portion of the 2 mm sized material was used for VNIR/SWIR spectral readings, which were sent to AusSpec International for interpretation. Duplicate samples were collected at each stage of the preparation, with a rate of 1:50 (field duplicates) or 1:20 (crush and pulp duplicates) samples. Duplicate results show acceptable levels of precision for the style of mineralisation. Sample sizes are considered appropriate for the style of mineralisation.

SECTION 1 SAMPLING TECHNIQUES AND DATA

Quality of assay data and laboratory tests	 All samples were submitted to an ALS Limited laboratory in Perth. 51 elements were analysed using 4-acid digestion followed by ICP-OES/MS measurements, including qualitative Au, Pt and Pd. 30 to 50 g of sample were used for Au analysis by fire assay with AAS finish. Portable XRF analysis on pulp for Cr, Nb, S, Si, Ta, Ti, Y and Zr was done using a Delta and Vanta Olympus instrument. Quality control samples consisted of field duplicates (1:50), crush duplicates (1:20), pulp duplicates (1:20), blanks (1:20) and certified reference materials (3:100). All the results were checked in the acQuire database before being used, and all the analysed batches performed within acceptable accuracy and precision limits for the style of mineralisation. No material contamination was noted in the laboratory process.
Verification of sampling and assaying	 All the sample intervals were visually verified using high quality core photography through Imago, and some selected samples were taken inside the mineralised interval for optical microscopy by qualified petrologists. No adjustment was done on the assay data that are electronically uploaded from the laboratory to the database. The drill core logging data is managed by a computerised system and strict validation steps were followed. The data are stored in a secured database with restricted access. There are two twinned holes (one RC and one diamond) that were drilled for validation of the assays. The results from these holes indicate that there is no bias present due to drilling method. A systematic analysis of duplicate samples was carried out at each stage of sampling including field, crush and pulp duplicates. The results from the duplicates were within acceptable range for this type of mineralisation. The results from blanks did not indicate contamination during the laboratory procedure.
Location of data points	 Drill hole collar locations were surveyed after drilling by an independent survey contractor using a Leica Viva GS15 GNSS base and rover system operating in RTK mode to a stated accuracy of +/- 20 mm. The topography is relatively flat with average elevation of 240 m. The data for the collars are provided in the Geocentric Datum of Australia (GDA94 zone 51). Downhole surveys were completed every 10, 25 or 50 m using a Reflex EZ Gyro or Reflex SPRINT-IQ.
Data spacing and distribution	 The drill hole spacing is 130 to 150 m across strike by 300 m along strike (between lines). The current drilling does not provide sufficient information for estimation of a Mineral Resource. The intercepted mineralisation is still open to the east, north, south and at depth and further drilling will continue during 2019. The reported results are from eleven diamond drill holes that were pending assay results in the release dated 27 February 2019 "Rio Tinto Exploration Update – copper-gold mineralisation discovered in the Paterson Province in the far east Pilbara region of Western Australia". No compositing has been applied to the samples.
Orientation of data in relation to geological structure	 Drilling is mainly orientated perpendicular to the main structural trend of the area; however, there are multiple mineralisation events and there is insufficient data to confirm the geological model.

Sample security	 Samples in calico bags are stored on site in enclosed stillages and transported via road on trucks from the site to an ALS Limited laboratory in Perth via Port Hedland. The diamond sample intervals were verified against the recorded core lost in the drilling plods. Sample numbers were generated directly from the database. Each sample was given a barcode at the laboratory and the laboratory reconciled the received sample list with physical samples. Barcode readers were used at the different stages of the analytical process. The laboratory uses a LIMS system that further ensures the integrity of the results.
Audits or reviews	 No external audits have been performed at this early stage of the project. The database containing the data related to all Rio Tinto exploration programs is internally checked.

	SECTION 2 REPORTING OF EXPLORATION RESULTS
Criteria	Commentary
Mineral tenement and land tenure status	 All Rio Tinto Exploration tenements are kept with respect to the legislation in terms of obligations including minimum expenditure. This project is located within Exploration Licence E45/4833, which is 100% owned by RTX and expires on the 12th of October 2022.
Exploration done by other parties	 No exploration has been carried out in the Winu area prior to RTX work in 2016.
Geology	 The prospect is located on the Anketell Shelf of the Yeneena Basin, a Neoproterozoic sequence of metasedimentary rocks and granitoids that is entirely covered by Phanerozoic sediments, up to 100 m thick in the Winu area.
	 The main lithologies intercepted by the current drilling at Winu include metasedimentary rocks (quartzites, metasandstones, metasiltstones and metapelites), unmetamorphosed sedimentary cover rocks (conglomerates, arkoses and mudstones), granite and dolerite. Host rocks to copper-gold mineralisation are fine to medium-grained subarkosic metasandstones and biotite-rich metasiltstones.
	 The mineralisation is predominantly vein controlled. Mineralisation includes chalcopyrite, chalcocite, pyrite, pyrrhotite, molybdenite, bornite, scheelite, bismuthinite and wolframite. Several generations of veins are identified and characterised by different mineralogical assemblages and textures. The main mineralisation event is associated with quartz-K- feldspar-sulphide and sulphide-carbonate veins with dominantly K-feldspar, muscovite, biotite and/or chlorite wallrock alteration.
	 Primary sulphide mineralisation is overlain by a supergene blanket containing secondary copper minerals as well as native copper in places.
Drill hole Information	 Appendix 1 provides details of drill hole coordinates, orientations and length for all drill holes.
Data aggregation methods	• The average grades presented in this report are all length-weighted averages above a 0.2% Cu, 0.2 g/t Au, 0.4% Cu or 0.4 g/t Au cut-off as noted.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Relationship between mineralisation widths and intercept lengths	 Insufficient data is available to confirm the geological model and as such all results are reported in apparent width; the true width is still unknown. 					
Diagrams	 Plans are included in the release as below: Location Map (Figure 1), Drillhole collar plan (Figure 2) and Winu Cross section (Figure 3) 					
Balanced reporting	• This is the second release of available exploration results for this deposit and updates the assay information for eleven holes from the first release that were still awaiting results at that time. Drilling is ongoing and further results will be reported in a subsequent release in Quarter 3, 2019.					
Other substantive exploration data	 Specific gravity measurements were taken on 20 cm of solid core for every 20 m, representing different lithologies and mineralised intervals. The measurement used the hydrostatic/gravimetric method (Archimedes Principle of buoyancy). Magnetic susceptibility was measured for each sample using KT-10 (kappameter) instrument. Geophysical surveys were carried out over the deposit area including airborne electromagnetics, ground gravity, induced polarisation/resistivity, passive seismic, and downhole density, gamma, conductivity, resistivity, induced polarisation, magnetic susceptibility and acoustic televiewer. Geometallurgical characterisation was conducted on the first RC holes, which indicated satisfactory results however further tests are required to confirm potential recovery. WorldView2 images were acquired for help in better planning and reporting of the exploration program. 					
Further work	 RTX has continued to evaluate and interpret the results from the 2018 and 2019 work program. The results presented here indicate the mineralisation is not closed off by the drilling performed to date. Preliminary metallurgical test work has commenced. Drilling at Winu is ongoing. In addition to the ongoing work at Winu, RTX is conducting exploration within the broader Paterson Province on its wholly owned licences and joint venture licences during 2019. 					

Appendix 1 Drill hole coordinates, orientations and depths The data for the collars are provided in the Geocentric Datum of Australia (GDA94 zone 51)

Drill hole	Easting	Northing	Elevation	Down hole	Dip (dea)	Azimuth	Hole	Hole
D047D4140004	(mE)	(mN)	(m RL)	depth (m)	(deg)	(deg)	type	status
RC17PAW0001	369093.00	7708170.00	246.00	174	60.00	260.00	RC	Assays Received
RC17PAW0002	369020.00	7708163.00	245.00	216	60.00	260.00	RC	Assays Received
RC18WIN0001	369390.00	7708180.00	248.30	213	70.86	261.13	RC	Assays Received
RC18WIN0002	368936.30	7708476.67	248.68	246	71	75.63	RC	Assays Received
RC18WIN0003	369103.96	7707866.69	245.42	150	70.29	262.88	RC	Assays Received
WB18WIN0001	370865.70	7707006.98	247.95	141	90	0	RC	Abandoned
WB18WIN0002	368808.29	7708143.31	245.87	150	90	0	RC	Assays Received
WIDI0007	369115.62	7707564.51	247.28	120	90	0	RC	Assays Received
WINU0001	369088.64	7708169.08	245.22	600.8	61.22	260.92	DD	Assays Received
WINU0002	369242.00	7708179.00	248.00	56.2	60	260	DD	Abandoned
WINU0003	369240.45	7708178.40	245.75	770.4	61.72	267.58	DD	Assays Received
WINU0004	369101.79	7707866.68	245.32	520.1	60.97	266.35	DD	Assays Received
WINU0005	368944.20	7708165.52	245.37	147.9	61.16	81.91	DD	Abandoned
WINU0006	368939.82	7708158.39	245.18	809.8	61.11	82.69	DD	Assays Received
WINU0007	369401.90	7707881.45	245.63	723.6	60.35	262.57	DD	Assays Received
WINU0008	368944.56	7708165.54	245.14	555.8	60.68	259.54	DD	Assays Received
WINU0009	368934.04	7708475.81	248.35	685.3	59.7	87.85	DD	Assays Received
WINU0010	369279.09	7707574.74	246.67	513.3	60.81	259.71	DD	Assays Received
WINU0011	369390.36	7708181.47	246.77	807.4	70.33	255.9	DD	Assays Received
WINU0012	369191.30	7707564.24	246.89	473.8	70.97	260.06	DD	Assays Received
WINU0013	368935.95	7708476.61	248.49	686.6	70.6	77.95	DD	Assays Received
WINU0014	369259.35	7707868.05	245.20	492.9	60.35	266.67	DD	Assays Received
WINU0015	369313.47	7707282.29	249.06	534.8	60.47	260.96	DD	Assays Received
WINU0016	368950.71	7707855.70	245.61	56.2	60	80	DD	Abandoned
WINU0017	368952.64	7707858.97	245.68	531.8	60.39	82.55	DD	Assays Received
WINU0018	369465.65	7707297.51	248.12	501.8	61.24	258.76	DD	Assays Received

Drill hole	Easting (mE)	Northing (mN)	Elevation (m RL)	Down hole depth (m)	Dip (deg)	Azimuth (deg)	Hole type	Hole status
WINU0019	369273.87	7707573.91	246.77	204	60.04	262.41	RC	Assays Received
WINU0020	369414.96	7707580.36	246.37	561.8	60.3	261.18	DD	Assays Received
WINU0021	368987.96	7707560.70	248.05	61.6	60	260	DD	Abandoned
WINU0022	368985.69	7707560.27	248.16	90	60	260	DD	Abandoned
WINU0023	369273.69	7707572.26	246.78	38.4	60	260	DD	Abandoned
WINU0024	369269.77	7707571.89	246.73	269.9	60	260	DD	Assays Received
WINU0025	368987.22	7707555.34	248.15	90.6	60	260	DD	Abandoned
WINU0026	369326.59	7707134.88	250.77	429.6	60.54	263.05	DD	Assays Received
WINU0027	369167.64	7707270.26	250.45	32.2	60	260	DD	Abandoned
WINU0028	369480.63	7707149.19	249.49	546.8	61.19	261.81	DD	Assays Received
WINU0029	368799.03	7707861.70	246.64	358.6	61.42	265.78	DD	Assays Received
WINU0030	368783.00	7708460.00	245.00	60.4	60	260	DD	Abandoned
WINU0031	369614.42	7707311.70	247.51	476.7	61.14	263.76	DD	Assays Received
WINU0032	369171.02	7707262.74	250.36	343.2	61.15	262.65	DD	Assays Received
WINU0033	368789.00	7708465.00	252.00	78.3	60	260	DD	Abandoned
WINU0034	369547.18	7706862.83	253.24	395.1	60.43	265.41	DD	Assays Received
WINU0035	369670.97	7706407.88	253.12	282	60.86	263.18	DD	Assays Received
WINU0036	369684.50	7706795.84	252.98	376.2	61.59	261.39	DD	Assays Received

Contacts

media.enquiries@riotinto.com riotinto.com Follow @RioTinto on Twitter

Media Relations United Kingdom

T +44 20 7781 1152 M +44 7920 503 600

David Outhwaite T +44 20 7781 1623 M +44 7787 597 493

Media Relations, Americas Matthew Klar T +1 514 608 4429

Media Relations, Asia

Grant Donald T +65 6679 9290 M +65 9722 6028

Investor Relations, United Kingdom

John Smelt T +44 20 7781 1654 M +44 7879 642 675

David Ovington T +44 20 7781 2051 M +44 7920 010 978

Nick Parkinson T +44 20 7781 1552 M +44 7810 657 556

Rio Tinto plc

6 St James's Square London SW1Y 4AD United Kingdom

T +44 20 7781 2000 Registered in England No. 719885

Media Relations, Australia

Jonathan Rose T +61 3 9283 3088 M +61 447 028 913

Matt Chambers T +61 (0) 3 9283 3087 M +61 433 525 739

Jesse Riseborough T +61 8 6211 6013 M +61 436 653 412

Investor Relations, Australia Natalie Worley T +61 3 9283 3063 M +61 409 210 462

Rachel Storrs T +61 3 9283 3628 M +61 417 401 018

Rio Tinto Limited Level 7, 360 Collins Street Melbourne 3000 Australia

T +61 3 9283 3333 Registered in Australia ABN 96 004 458 404