Our reference: RTIO-HSE-0340856
Your reference: 2011/5815

To whom it may concern

2019 Annual Compliance Report Yandicoogina: 2011/5815

Attached is the 2019 Annual Compliance Report for the Yandicoogina Junction South West and Oxbow Iron Ore Project as required by Environment Protection and Biodiversity Conservation Act 1999 approval 2011/5815, Condition 19. This report covers the period from 1 January to 31 December 2019.

Please contact Steve Rusbridge, Environment Superintendent, at Steve.Rusbridge@riotinto.com if you have any queries.

Yours sincerely

Mariette Bylsma
General Manager, Yandicoogina – Iron Ore
Rio Tinto
Environment Protection and Biodiversity Conservation Act 1999
Annual Compliance Report

EPBC Approval: 2011/5815

Project: Yandicoogina Junction South West and Oxbow Iron Ore Project, WA

Report period: 1 January – 31 December 2019
Contents

1 Description of activities 1
2 Audit table 1
3 New environmental risks 13
4 Declaration of accuracy 14
5 Appendices 15

Tables
Table 1 EPBC Approval Conditions Compliance Table: 2011/5815 - Yandicoogina .. 2

Appendices
Appendix 1: Threatened Species Offset Plan 2019 Compliance Report ... 15
1 Description of activities

<table>
<thead>
<tr>
<th>EPBC approval number:</th>
<th>2011/5815</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project name:</td>
<td>Yandicoogina Junction South West and Oxbow Iron Ore Project, WA</td>
</tr>
<tr>
<td>Approval holder:</td>
<td>Hamersley Iron – Yandi Pty Limited</td>
</tr>
<tr>
<td>Approval holder's Australian Business Number:</td>
<td>56 009 181 793</td>
</tr>
<tr>
<td>Approved action:</td>
<td>To develop new mine pits and supporting infrastructure, at Yandicoogina, central Pilbara region of WA, as described in the referral received by the department on 20 January 2011.</td>
</tr>
<tr>
<td>Location of the project:</td>
<td>Pilbara region of Western Australia</td>
</tr>
<tr>
<td>Reporting period of the report:</td>
<td>1 January to 31 December 2019</td>
</tr>
<tr>
<td>Report preparation date:</td>
<td>30 April 2020</td>
</tr>
<tr>
<td>Implementation phase(s) during reporting period:</td>
<td>Operational</td>
</tr>
</tbody>
</table>

2 Audit table

Details of compliance with each condition under EPBC approval 2011/5815 is presented in Table 1.
Table 1 EPBC Approval Conditions Compliance Table: 2011/5815 - Yandicoogina

<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Condition</th>
<th>Compliance status</th>
<th>Evidence/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To protect habitat for the Northern Quoll and Pilbara Olive Python disturbance of vegetation must: a) not exceed a total of 2,200 hectares and must only occur within the development footprint; and b) not exceed 40 hectares within the floodplain and riparian vegetation zone associated with Marillana Creek located within the development footprint.</td>
<td>Compliant</td>
<td>Aerial photography was collected during the reporting period to reconcile ground disturbance and the prescribed clearing limits were not exceeded. Disturbance is controlled through a RTIO permitting process and mapped using GIS through on ground and/or aerial surveying.</td>
</tr>
</tbody>
</table>
| 2 | The person taking the action must establish and maintain an **EPBC Act listed threatened species** register on a publicly available website. The Register must record any sightings of **EPBC Act listed threatened species**, alive or dead, in the **project area** no less than every three months during **construction**, and no less than every 12 months during **operation**. The web address of the register must be provided to the **department** within 30 days of establishment. | Compliant | The Threatened Species register, Yandi_EPBC_National Matters of Environmental Significance Register (our ref: RTIO-HSE-0163656) was established in 2013 and is publically available at:
The register is updated no less than every 12 months (annually) as the project was in Operations phase for 2019. |
<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Condition</th>
<th>Compliance status</th>
<th>Evidence/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The person taking the action must develop a staff environmental induction to be undertaken by all staff, including contractors, prior to the commencement of their duties and annually thereafter. The induction material must include, but not necessarily be limited to:</td>
<td>Compliant</td>
<td>All new staff and contractors commencing work at Yandicoogina Operations are required to complete the Yandicoogina Essentials Induction prior to starting work at the site (RTIO-HR-0056810). The induction includes a section on the EPBC Approval, the associated EPBC threatened species, reporting protocols, legal penalties and responsibilities. An online EPBC mandatory qualification (Environmental Protection Induction) is also a requirement for Yandicoogina personnel, this is accessed via the Rio Tinto online training system “Scodle”. Refresher training for the induction is required annually. Training records are maintained by Learning and Development. Visitors to site are required to complete the Visitors Induction which also includes information on EPBC Act listed threatened species known to exist within the Operational area.</td>
</tr>
<tr>
<td></td>
<td>a) clear colour images and simple descriptions of the ecology and diagnostic features of EPBC Act listed threatened species and their habitat;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) protocols for reporting sightings, including vehicle strike (including GPS coordinates), of EPBC Act listed threatened species within seven days to the officer in charge of implementing the EPBC Act listed threatened species Register described in condition 2);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) reference to the penalties imposed for causing intentional harm to EPBC Act listed threatened species; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) legal and on site environmental responsibilities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The person taking the action must display the information required in condition 3) a) on signs or posters around staff amenities, construction camps and material/equipment depots, and on laminated cards for all staff vehicles. The signs, posters and laminated cards must also state that the Pilbara Olive Python is slow moving and highly susceptible to road strike.</td>
<td>Compliant</td>
<td>Signage is on display widely across site including camp, administration offices and laminated cards with this information are maintained in all Yandicoogina RTIO site vehicles. Yandicoogina MS1038 EPBC Act vehicle information card (our ref: RTIO-HSE-0163384). Yandicoogina MS1038 EPBC Act poster (our ref: RTIO-HSE-0163382).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5</td>
<td>In the event one or more Northern Quoll and/or Pilbara Olive Python individuals are detected within the development footprint, the person taking the action must limit vehicle speeds outside the active pit areas, excluding automated haulage machines, to 40 km per hour on all roads within the development footprint between dusk and dawn until no Northern Quolls and/or Pilbara Olive Python individuals are sighted for a continuous period of four weeks.</td>
<td>Compliant</td>
<td>No Northern Quolls or Pilbara Olive Pythons were detected in the development footprint during the reporting period. Personnel have access to the Yandicoogina EPBC species reporting procedure on the Health, Safety, Environment and Quality intranet (our ref: RTIO-HSE-0169976).</td>
</tr>
<tr>
<td>6</td>
<td>The person taking the action must ensure that all vehicles, machinery, and equipment remain within the development footprint, and must prevent off road driving, unless in case of an emergency.</td>
<td>Compliant</td>
<td>All vehicles, machinery, and equipment remained in the development footprint. Compliance is ensured through designated light vehicle and heavy vehicle access and haul roads. Personnel are not permitted to drive outside of the designated road system. This requirement is included in the Yandicoogina Site Essentials induction which all personnel are required to complete prior to commencing work on site. No emergency situations required vehicle access outside of the development footprint during the reporting period.</td>
</tr>
<tr>
<td>7</td>
<td>The person taking the action must ensure that all vehicles, machinery and equipment are prevented from accessing known locations of the Hamersley Lepidium, as seen in Annexure 1 during construction and operation.</td>
<td>Compliant</td>
<td>Vehicles, machinery and equipment did not access known locations of Hamersley lepidium during the report period. The Yandicoogina ground disturbance permitting and approvals request systems include an avoidance layer in the GIS which covers known locations of Hamersley lepidium as recorded in Annexure 1 of EPBC 2011/5815. This system highlights the areas that vehicles, machinery and equipment are prevented from accessing or disturbing in any way.</td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 8 | The person taking the action must implement measures to prevent the spread or establishment of feral animal species populations within the **project area** in a manner that is sympathetic with the conservation of **EPBC Act listed threatened species**. Measures must include, but not necessarily be limited to:
 a) appropriate waste management associated with staff amenities, **construction** camps and material/equipment depots;
 b) a control program which is consistent with current national guidelines for pest control; and
 c) annual monitoring, reporting and evaluation of the measures. | Compliant | Measures have been undertaken to prevent spread or further establishment of feral animal species.
Appropriate waste management has been implemented to ensure the project infrastructure and accommodation facilities do not encourage or allow the establishment of feral animal populations.
Yandicoogina manages landfill facilities in accordance with the **Environmental Protection (Rural Landfill) Regulations 2002** and Iron Ore (WA) Non-mineral Waste Management Work Practice (our ref: RTIO-HSE-0010849) and the Waste Management Treatment, Storage and Disposal Guidelines (our ref: RTIO-HSE-0011578).
Control programs for feral animals have been implemented in line with the Yandicoogina Feral Animal Management Plan (our ref: RTIO-HSE-0187214).
Feral animal sightings and trapping activities are recorded in the - Pilbara Ops - feral animal control datasheet (our ref: RTIO-HSE-0230450).
In the reporting period 7 cats were trapped and euthanized. |
<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Condition</th>
<th>Compliance status</th>
<th>Evidence/Comments</th>
</tr>
</thead>
</table>
| 9 | The person taking the action must implement measures to prevent the spread or establishment of invasive weeds within the **project area** in a manner that is sympathetic with the conservation of **EPBC Act listed threatened species**. Measures must include, but not necessarily be limited to:
 a) baseline surveys and Geographical Information System mapping of target weed species, as determined by a **suitably qualified expert**;
 b) a targeted control program;
 c) weed hygiene measures for vehicles and mining equipment and machinery; and
 d) annual monitoring, reporting and evaluation of the measures identified in conditions 9) a) to c) | Compliant | Yandicoogina Weed Monitoring Plan was established in 2013 (our ref: RTIO-HSE-0188629) with a baseline weed survey completed.
Weed mapping has been included as a layer within the on-site GIS and includes location of weeds found during surveys and timing and location of weed management activities.
All machinery and equipment brought to site complete weed hygiene processes to prevent the introduction and spread of weeds as outlined in RTIO Equipment hygiene inspection procedure (our ref: RTIO-HSE-0036005).
Targeted weed control activities were implemented within the project area in the reporting period. |
| 10 | The person taking the action must implement measures to prevent and/or control the spread of fires caused by any component of **construction and operation**. | Compliant | Detailed measures to prevent the starting of fires on site as outlined within the Rio Tinto Iron Ore Hot Work Safety Work Practice (Our ref: RTIO-HSE-0049936).
Measures to control and prevent the spread of any fires are detailed in the RTIO Iron Ore Bushfire Management Plan (our ref: RTIO-HSE-0335487). |
| 11 | In the event the person taking the action becomes aware of new information regarding the presence of any **EPBC Act listed threatened species** within the **development footprint**, that information must be reported to the **Minister** within seven business days of becoming aware of the new information. | Compliant | No EPBC Act listed threatened species were sighted within the development footprint during the reporting period.
Yandi_EPBC_National Matters of Environmental Significance Register (our ref: RTIO-HSE-0163656). |
<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Condition</th>
<th>Compliance status</th>
<th>Evidence/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>The person taking the action must implement measures to minimise potential impacts from dewatering and discharge of surplus water on habitat for the Northern Quoll and Pilbara Olive Python along Marillana Creek and Weeli Wolli Creek, both in the dewatering and surplus water discharge impact areas. Measures must include, but not necessarily be limited to:</td>
<td>Compliant</td>
<td>The potential impacts from dewatering and discharge of surface water on habitat for the Northern Quoll and Pilbara Olive Python along Marillana Creek and Weeli Wolli Creek, both in the dewatering and surplus water discharge impact areas have been identified and outlined within the Water and Discharge Monitoring and Management Plan and Vegetation and Groundwater Dependent Ecosystems Monitoring and Management Plan (our ref: RTIO-HSE-165556). These plans also outline the environmental performance objectives and the management measures to minimise these potential impacts. Ongoing implementation of these plans during the project demonstrates compliance with this condition. Management activities and monitoring as per the plan were continued during the reporting period including implementation of contingency measures and reporting protocols.</td>
</tr>
<tr>
<td></td>
<td>a) baseline data surveys to be undertaken prior to dewatering and the discharge of surplus water, for Northern Quoll and Pilbara Olive Python habitat, including vegetation abundance, health, foliage cover and diversity;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) appropriate monitoring (including annual surveys) to detect changes, occurring as a result of the action, to Northern Quoll and Pilbara Olive Python habitat, including vegetation abundance, health, foliage cover and diversity;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) thresholds appropriate for the changes determined for condition 12) b) that establish when the action is resulting in degradation of habitat taking into consideration climatic variability, seasonal variation and discharge volumes from other relevant mines;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) contingency measures to be implemented, should the thresholds identified in condition 12) c) be exceeded as a result of the action, for addressing current and future exceedances and remediation of habitat degraded by dewatering and discharge activities;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) protocols for reporting to the Minister within seven days if the thresholds developed for condition 12) c) are exceeded, within 30 days for contingency measures implemented and within 6 months on the success the contingency measures.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>The person taking the action must rehabilitate all potentially suitable</td>
<td>Compliant</td>
<td>The Yandicoogina Mine Closure Plan (our ref: RTIO-HSE-0208486) outlines the planned rehabilitation for these and other habitat areas that have been disturbed during construction and operations. Baseline data has been collected prior to disturbance to inform rehabilitation activities and monitoring requirements are included within the closure plan. Rehabilitation trials are undertaken regularly with the results informing closure planning activities and rehabilitation measures. No suitable areas were identified in the reporting period for progressive rehabilitation within the project area however progressive backfilling continued in the Junction South West A and Junction South West C pits.</td>
</tr>
<tr>
<td></td>
<td>habitat for EPBC Act listed threatened species that is disturbed during</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>construction and operation. The rehabilitation must be developed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in consultation with a suitably qualified expert and must include, but</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not necessarily be limited to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) baseline data of the characteristics of the pre-mining ecosystems within</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the development footprint;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) use of plant species of local provenance that are compatible with land</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>system units that provide suitable habitat for **EPBC Act listed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>threatened species**; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) monitoring and evaluation annually for three years or until</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>establishment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>To compensate for the residual impacts of the action and for the</td>
<td>Compliant</td>
<td>The Yandicoogina Threatened Species Offset Plan (TSOP) (our ref: RTIO-HSE-0274440) was submitted to DoE for approval on 23 December 2014 (our ref: RTIO-HSE-0245553). The TSOP (V2) was subsequently approved by the Minister on 5 March 2015 (DoE ref: 2011/5815, our ref: RTIO-HSE-0275796). Further adjustments to the plan, to remove the requirements for Pilbara Olive Python abundance monitoring, fire management and weed monitoring to focus efforts on the introduced predator control program for the Northern Quolls were submitted to DoE 10 May 2017 (our ref: RTIO-HSE-0308684) which were accepted by DoE 30 May 2017 (our ref: RTIO-CR-0260147).</td>
</tr>
<tr>
<td></td>
<td>better protection and long-term conservation of the Northern Quoll</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Pilbara Olive Python, a Threatened Species Offset Plan (TSOP) must</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be submitted to the Minister for approval. The TSOP must include, but</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not necessarily be limited to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) a contribution of no less than $3,000,000 (GST exclusive) to fund,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>extend or expand a land management program within the Pilbara bioregion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for a period of no less than five years;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) details of measures to control and/or manage, for the benefit of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Northern Quoll and Pilbara Olive Python:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. introduced predators;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. feral herbivores;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. wild fires; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. invasive weeds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) for each threat identified in condition 14) b), the TSOP must define:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>i. how the control/management measures are expected to benefit the Northern Quoll and Pilbara Olive Python;</td>
<td></td>
<td>Ongoing implementation of the plan has occurred with $2,931,859.87 spent to the end of 2019. See Appendix 1 of this report for the TSOP Compliance Report.</td>
</tr>
<tr>
<td></td>
<td>ii. details of the location and area of land to be managed which must be mapped and provided to the department in a shapefile(s);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. details of methodology, timing, frequency and intensity (effort) of management measures;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. responsibility for management measures;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. details of how the management actions identified for condition 14 b) will be undertaken in a manner that is sympathetic with the conservation of other relevant threatened species listed under the EPBC Act known to occur in the area identified under 14 c) ii).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) details of a monitoring program, including but not necessarily limited to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. methodology, timing, frequency, scope and survey effort for/of monitoring;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. baseline surveys of the area to be managed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. monitoring during and post land management actions to determine the effectiveness of land management actions;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. performance indicators, which will determine the effectiveness of the land management program; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. measures to make the results of the monitoring made publically available.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The TSOP must be submitted to the Minister for approval by 31 December 2014. Should the TSOP be approved then the approved TSOP must be implemented.
<table>
<thead>
<tr>
<th>Condition Number</th>
<th>Condition</th>
<th>Compliance status</th>
<th>Evidence/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Documentary evidence must be submitted to the department showing that payments of the total amount required in condition 14) a) have been made to the person(s) responsible for implementation of the land management program within 18 months of the date of approval of the TSOP.</td>
<td>Compliant</td>
<td>A biodiversity offset fund has been established with $3 million deposited into the trust account on 18 February 2014 (Document number 110319419). TSOP approved by the Minister on 5 March 2015 (DoE ref: 2011/5815, our ref: RTIO-HSE-0275796).</td>
</tr>
<tr>
<td>16</td>
<td>Annually on 30 April, after commencement of the action, a report must be submitted to the Minister detailing how condition 14) is, or has been, met including: a) whether the timeframes for undertaking the management actions identified in condition 14) c) and d) have been met; and b) whether the performance indicators required for condition 14) c) have been met.</td>
<td>Compliant</td>
<td>2019 compliance against this condition provided by the submission of the 2018 EPBC compliance report (our ref: RTIO-HSE-0329333).</td>
</tr>
<tr>
<td>17</td>
<td>Within 10 days after the commencement of the action, the person taking the action must advise the Department in writing of the actual date of commencement.</td>
<td>Compliant</td>
<td>Notice of project commencement was provided to DoE on 3 December 2012 (our ref: RTIO-HSE-0165415).</td>
</tr>
<tr>
<td>18</td>
<td>The person taking the action must maintain accurate records substantiating all activities associated with or relevant to the conditions of approval, including measures taken to implement the plans required by this approval, and make them available upon request to the department. Such records may be subject to audit by the department or an independent auditor in accordance with section 458 of the EPBC Act, or used to verify compliance with the conditions of approval. Summaries of audits will be posted on the department's website. The results of audits may also be publicised through the general media.</td>
<td>Compliant</td>
<td>Records associated with or relevant to the conditions of this approval are maintained within the Rio Tinto Iron Ore Document Management System and are available upon request. No requests for information were received from and no audits were conducted by the DoE during the reporting period.</td>
</tr>
<tr>
<td>19</td>
<td>Annually on 30 April, after commencement of the action, the person taking the action must publish a report on their website addressing compliance with each of the conditions of this approval, including implementation of any management plans as specified in the conditions. Documentary evidence providing proof of the date of publication and non-compliance with any of the conditions of this approval must be provided to the department at the same time as the compliance report is published.</td>
<td>Compliant</td>
<td>Annual reports as published on the Rio Tinto website and provided to DoE at the time of publication. Reports available at https://www.riotinto.com/search/documents#main-search_e=0&main-search_sxatags=pilbara under Year and Compliance.</td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>Upon the direction of the Minister, the person taking the action must ensure that an independent audit of compliance with the conditions of approval is conducted and a report submitted to the Minister. The independent auditor must be approved by the Minister prior to the commencement of the audit. Audit criteria must be agreed to by the Minister and the audit report must address the criteria to the satisfaction of the Minister.</td>
<td>Not applicable</td>
<td>No directions were received from the Minister during the reporting period.</td>
</tr>
<tr>
<td>21</td>
<td>If the person taking the action wishes to carry out any activity otherwise than in accordance with the plan(s) as specified in the conditions, the person taking the action must submit to the department for the Minister’s written approval a revised version of that plan(s). The varied activity shall not commence until the Minister has approved the varied plan(s) in writing. The Minister will not approve a varied plan(s) unless the revised plan(s) would result in an equivalent or improved environmental outcome over time. If the Minister approves the revised plan(s), that plan(s) must be implemented in place of the plan(s) originally approved.</td>
<td>Not applicable</td>
<td>No variations were requested during the reporting period.</td>
</tr>
<tr>
<td>22</td>
<td>If the Minister believes that it is necessary or convenient for the better protection of listed threatened species and communities to do so, the Minister may request that the person taking the action make specified revisions to the plan(s) specified in the conditions and submit the revised plan(s) for the Minister’s written approval. The person taking the action must comply with any such request. The revised approved plan(s) must be implemented. Unless the Minister has approved the revised plan(s), then the person taking the action must continue to implement the plan(s) originally approved, as specified in the conditions.</td>
<td>Not applicable</td>
<td>No requests were received from the Minister during the report period.</td>
</tr>
<tr>
<td>23</td>
<td>If, at any time after five (5) years from the date of this approval, the person taking the action has not substantially commenced the action, then the person taking the action must not substantially commence the action without the written agreement of the Minister.</td>
<td>Compliant</td>
<td>Notice of project commencement was provided to DoE on 3 December 2012 (our ref: RTIO-HSE-0165415). Project substantially commenced in 2013.</td>
</tr>
<tr>
<td>Condition Number</td>
<td>Condition</td>
<td>Compliance status</td>
<td>Evidence/Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>24</td>
<td>Unless otherwise agreed to in writing by the Minister, the person taking the action must publish all plan(s) referred to in these conditions of approval on their website. Each plan must be published on the website within 1 month of being approved.</td>
<td>Compliant</td>
<td>Threatened Species Offset Plan as required by Condition 14 published on the Rio Tinto website and accessible via the link below: https://mc-56397411-4872-452d-b48e-428890-cdn-endpoint.azureedge.net/-/media/Content/Documents/Operations/Pilbara/RT-Pilbara-Threatened-species-offset-plan.pdf?rev=8915135e7b4b40e8af4ea297deb1b68a</td>
</tr>
</tbody>
</table>
3 New environmental risks

No new environmental risks have become apparent during the reporting period.
4 Declaration of accuracy

In making this declaration, I am aware that sections 490 and 491 of the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act) make it an offence in certain circumstances to knowingly provide false or misleading information or documents. The offence is punishable on conviction by imprisonment or a fine, or both. I declare that all the information and documentation supporting this compliance report is true and correct in every particular. I am authorised to bind the approval holder to this declaration and that I have no knowledge of that authorisation being revoked at the time of making this declaration.

Signed: [Signature]

Full name: Mariette Bylsma

Position: General Manager, Yandicoogina – Iron Ore

Organisation: Rio Tinto

Date: 20 / 04 / 2020
5 Appendices

Appendix 1: Threatened Species Offset Plan 2019 Compliance Report
Yandicoogina JSW and Oxbow Iron Ore Project
TSOP 2019 Compliance Report
EPBC 2011/5815 Condition 14: Threatened Species Offset Plan
MS 1038 Condition 7: Offsets

April 2020

Hamersley Iron-Yandi Pty Limited
152-158 St Georges terrace, Perth
GPO Box A42, Perth WA 6837

RTIO-HSE-0342880
Disclaimer and Limitation

This report has been prepared by Rio Tinto Iron Ore (Rio Tinto), on behalf of Hamersley Iron-Yandi Pty Limited (the Proponent), specifically for the Yandicoogina JSW and Oxbow Project. Neither the report nor its contents may be referred to without the express approval of Rio Tinto, unless the report has been released for referral and assessment of proposals.

<table>
<thead>
<tr>
<th>Document Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CONTEXT.. 1

ANNUAL REPORTING.. 2

1 **INTRODUCED PREDATOR CONTROL**... 3
 1.1 ACTION 1: NORTHERN QUOLL SURVIVORSHIP STUDY... 3
 1.2 ACTION 2: INTRODUCED PREDATOR CONTROL PROGRAM.. 4
 1.3 FERAL CAT MONITORING.. 5
 1.4 NORTHERN QUOLL MONITORING PROGRAM.. 8

2 **INTRODUCED HERBIVORE MANAGEMENT**.. 12
 2.1 ACTION 3: MUSTER TO REMOVE FERAL CATTLE ACROSS THE LMA... 12
 2.2 ACTION 4: CULL OF FERAL INTRODUCED HERBIVORES... 12

3 **WILDFIRE MANAGEMENT**.. 13
 3.1 ACTION 5: FIRE REGIME MONITORING .. 13

4 **WEED CONTROL**.. 14
 4.1 ACTION 6: MONITORING OF WEEDS OF LAND MANAGEMENT AREA.. 14

5 **TSOP EXPENDITURE**... 15

6 **REFERENCES**... 16

7 **APPENDICES**... 16

APPENDICES

Appendix 1: RTIO-HSE-0343234 Predator Control Baiting and Monitoring Program, Yarraloola and Red Hill, Pilbara Region, Western Australia. 2019 Annual and Final Report - Year 5. .. 16
CONTEXT

The Yandicoogina Junction South West and Oxbow Project is subject to both Western Australian State and Commonwealth environmental approval via Ministerial Statement 1038 and EPBC Decision Notice 2011/5815, both of which include offset conditions:

- Condition 7-1 of MS 1038 requires the contribution of $3M AUD towards an offset for clearing completed under MS 914.

- Condition 7-3 of MS 1038 requires the contribution of funds for the clearing of ‘Good to Excellent’ condition vegetation towards an offset, to be distributed via conditions 7-5, 7-6 and 7-7.

- Condition 14 of EPBC 2011/5815 requires the submission of a Threatened Species Offset Plan (TSOP) which includes a contribution of no less than $3M over five years (Condition 14a).

Both agencies have agreed that the State offset requirement could be used to fund the development of the Commonwealth required TSOP.

Specifically, the TSOP is required to offset significant residual impacts to biodiversity and to two Matters of National Environmental Significance: the northern quoll and the Pilbara olive python; by managing threatening processes identified in Condition 14b EPBC 2011/5815 as:

1. introduced predators;
2. introduced herbivores;
3. wildfire; and
4. weeds.

The TSOP (Rio Tinto 2015; RTIO-HSE-0274440) was approved by the Office of the Environmental Protection Authority on 19 January 2015 (RTIO-HSE-0248720) and by the Department of the Environment (DoE) on 5 March 2015 (RTIO-HSE-0275796).

Management actions have been prioritised following consultation with the Department of Biodiversity, Conservation and Attractions (DBCA) and a Biodiversity Offsets Advisory Panel comprising independent experts. On their advice, the TSOP prioritises resources and expenditure towards the delivery of a landscape-scale Introduced Predator Control Program (Action #1) and associated monitoring. As a result, a relatively small proportion of the overall funds and resources are directed towards managing the remaining three actions on introduced herbivores, wildfire and invasive weeds. In 2017 it was agreed with the DoE that as a part of adaptive management, the best environment outcomes would be to concentrate funding on the Predator Control Program (Eradicat®) and remove the requirement to complete further weed monitoring and a fire management plan as it is unlikely to result in improved environmental outcomes for the Northern Quoll and Pilbara olive python.

The Introduced Predator Control Program was designed collaboratively by the DBCA, Rio Tinto (on behalf of the Proponent, Hamersley Iron-Yandi Pty Limited) and the Biodiversity Offsets Advisory Panel and commenced in 2015 as the Northern Quoll Eradicat® Cat Bait Uptake and Survivorship Study. The aim of the Survivorship Study was to determine the impact of feral cat baiting on northern quolls and thus inform the scope of the operational predator control program for subsequent years. The Survivorship Study was approved by the Parks and Wildlife Animal Ethics Committee (Approval # 2014/11).
ANNUAL REPORTING

The table below highlights the progress of all projects in the TSOP in 2019.

<table>
<thead>
<tr>
<th>Management program</th>
<th>Action</th>
<th>Details of work progressed</th>
<th>Status / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduced Predator Control Program</td>
<td>2</td>
<td>Eradicat® baiting program</td>
<td>Completed. Appendix 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feral cat monitoring program</td>
<td>Completed. Appendix 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern quoll monitoring program</td>
<td>Completed. Appendix 1</td>
</tr>
<tr>
<td>Introduced Herbivore Management</td>
<td>3</td>
<td>Mustering of cattle across the Yarraloola land management area (Yarraloola LMA), inclusive of the section of unallocated Crown land to the east of Yarraloola Station.</td>
<td>Completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetation cover change assessment on Yarraloola and Red Hill.</td>
<td>In Progress.</td>
</tr>
<tr>
<td>Weed Management</td>
<td>6</td>
<td>Vegetation cover change assessment on Yarraloola and Red Hill.</td>
<td>In Progress.</td>
</tr>
<tr>
<td>Offset Funds</td>
<td></td>
<td>Condition 14a and 15 of EPBC 2011/5815 and Condition 7 of MS1038</td>
<td>Completed.</td>
</tr>
</tbody>
</table>
1 INTRODUCED PREDATOR CONTROL

GOAL: To enhance northern quoll and Pilbara olive python populations (and populations of other native fauna) and their habitat through a reduction in introduced predators (principally feral cats but also foxes and wild dogs) within the Yarraloola LMA.

1.1 ACTION 1: NORTHERN QUOLL SURVIVORSHIP STUDY

1.1.1 Management Objective

To assess the field uptake of feral cat baits Eradicat® by northern quoll and its impact on their survivorship and reproduction, and to subsequently develop an effective introduced predator control strategy that will benefit the northern quoll and other threatened fauna in the LMA.

The 2015 northern quoll bait uptake and survivorship study found that there was no observable impact from the Eradicat® baiting trial on local northern quoll populations and concluded that baiting with Eradicat® in winter is unlikely to have a detrimental impact on northern quolls in the Yarraloola LMA. As such, the Introduced Predator Control Program (proposed as Action 2 in the TSOP) was implemented starting in 2016 across the LMA. This action is considered closed.
1.2 ACTION 2: INTRODUCED PREDATOR CONTROL PROGRAM

1.2.1 Management Objective

To improve northern quoll and Pilbara olive python habitat within the LMA through reduction in the abundance of introduced predators.

1.2.2 Proposed Method

A detailed description of the predator control program is outlined in the TSOP, with the following high level commitments:

- The program will be undertaken by DBCA within the LMA, covering an area of approximately 100,000 ha.

- Baiting will be conducted in the cool and dry mid-winter, at a time when bait uptake by feral cats is maximised due to the low activity and abundance of prey.

- Based on a heat map analysis of camera trap detections of cats from 2016-2017, a large area of the Hamersley Ranges was excluded from the bait cell, and three smaller parcels of cat preferred Sherlock and Urandy plains habitat was added, to maximise the uptake of baits.

1.2.3 Study aims for 2019

The project for 2019 was largely a continuation of the baiting and monitoring programs established in 2016. Due to ongoing concerns regarding the effectiveness of the camera trap monitoring method used to measure change at very low feral cat densities, we continued the cat collaring and radio-tracking component of the study that was introduced in 2018. Radio-telemetry allowed for independent verification of feral cat mortality rates due to winter baiting.

Aims were to:

1) conduct the fourth annual broad-scale aerial baiting program using Eradicat® baits targeting feral cats in the Yarraloola LMA;

2) assess effectiveness of this baiting program to reduce feral cat populations within the baited cell through camera trap monitoring and radio telemetry;

3) assess the potential non-target impacts and/or benefits of broad-scale feral cat baiting on northern quoll populations by comparing their abundance, survivorship and demographics over time within a treatment (Yarraloola - baited) and reference site (Red Hill - unbaited); and

4) monitor the potential indirect benefits of reduced feral cat numbers for northern quolls by investigating changes to the ecological niche of northern quolls (dietary and habitat shifts) in the treatment site (cat baited) compared with the reference site.

1.2.4 2019 Eradicat® Baiting Program Output

The introduced predator control program in 2019 baited 142,036 ha of the Yarraloola land management area. The outputs of the program are detailed in Appendix 1 and summarised below:

- 70,850 Eradicat® baits were dropped over the period 8-9 July, covering an area of 142,036 ha.
Rainfall for 2019 was well below average across both recording stations at Pannawonica (323 mm) and Red Hill (336 mm) particularly on Red Hill where it was less than half the annual average.

No ground baiting of the Pannawonica road corridor took place in 2019 as many parts had been extensively burnt. Thirty ground baits were laid along drill pad lines on Mesa G. These baits were monitored using camera traps and there was one confirmed take by a feral cat.

No carcasses of non-target species were observed following the baiting on the three field trips undertaken by project staff members in early-mid July, early August or September.

1.2.5 2019 Analysis and Outcomes

The Eradicat® Baiting Program provides for the following outcomes:

- The 2016 study shows that quolls were not impacted by the implementation of toxic Eradicat® baits in the Yarraloola LMA. Quolls avoid the lethal dosage by quickly regurgitating the bait after ingestion.

- The abundance of quolls pre and post baiting (mean number of quoll detection events per 100 cat trap nights) showed no evidence of declining following baiting programs in the three years within Yarraloola. A decline in quoll detection rates did occur in the unbaited Red Hill site in both years where there were more cats present.

- Sub-lethal exposure to 1080 can pass through milk, which could lead to death of young marsupials, which could lead to smaller litter sizes in the females exposed to the bait for the last two years. However, it was found that quolls on Yarraloola had significantly larger litters. This supports the outcomes from 2016 report that indicates the quolls are “bait-shy” after exposure to a bait, and will not ingest further baits. Cameras showed that most quolls, even if they encountered a dried out bait still present from the winter program, would not ingest it.

- Bait mortality amongst first and second year cats is expected to be higher than the older, more experienced cats.

1.3 FERAL CAT MONITORING

1.3.1 Proposed Method

To determine the impact of the baiting program under the TSOP, Morris and Thomas (2014) recommended the use of the feral cat monitoring methods DBCA have developed and used to measure site occupancy pre- and post-baiting. Sixty cat camera trap sites were established at each of the study sites in a semi-randomised fashion from the existing road networks. Cameras were situated within walking distance of a road (50 m to 400 m either side) and at least 3 km from the closest neighbouring camera. Cameras were set in mid-June, allowing for 25 nights of monitoring on each camera trap before the baiting commenced on 8 July. Three weeks following baiting, cat cameras were redeployed (30 July) and then collected during the quoll trapping trip in September. During the period between the two monitoring sessions, cameras and lures were removed to prevent feral cats from becoming accustomed to them. The impact of the baiting program on the feral cat population was determined by comparing the 25 camera trap nights from the pre- and post-bait monitoring sessions in both the treatment and reference sites to calculate detection rates and occupancy before and after baiting.
• Camera trap monitoring arrays were established using Hyperfire™ PC900; Reconyx cameras (Wisconsin, USA). 60 cameras were set horizontally, attached to a peg approximately 30cm off the ground and oriented to face south.

• A lure pole with visual and olfactory lures for feral cats was set 3m in front of the camera. The lure pole contained 15 mL of ‘Catastrophic’ scent oil, and had three turkey feathers and silver tinsel attached at the mid-point of a 1.5 m bamboo pole.

Feral cat trapping was also conducted, following standard techniques, by two teams on Yarraloola from 21 May – 1 June. No trapping was undertaken on Red Hill in 2019. A high level description of the method is outlined below.

• Victor ‘Soft Catch’® were used, with cat faeces as the attractant. Trap pan tensions were set at 2 pounds (~900 grams) as a precautionary measure to ensure northern quolls were not accidentally captured. Traps were set along similar transects used in 2018 however recently burnt areas were avoided due to the lack of shelter. Additional trap sites were situated in known preferred habitat types of feral cats.

• Traps were set in shaded sites along the edge of tracks, 0.5 – 1.0 km apart. Open-ended (walk through) trap sets were used consisting of two traps positioned lengthwise and vegetation used as a barrier along the sides of the trap area. In addition, some ‘cubby’ trap sets were used consisting of two traps positioned lengthwise inside a natural ‘cubby’ created in the side of a large spinifex clump. Seventy-six trap pairs were set for approximately 10 nights each.

• Each cat caught over 2000g was fitted with a GPS/VHF radio-telemetry collar with mortality signal. The collars were programmed to go into mortality mode following 12 hours of inactivity.

1.3.2 2019 Feral Cat Monitoring Output

The outputs from the feral cat monitoring are detailed in Appendix 1, with a high level summary below:

• Detections of feral cats and the number of camera sites at which they were recorded remained low on Yarraloola-baited in 2019 though were higher on Red Hill-unbaited (Table 1).

• The detection rates of feral cats prior to baiting in 2019 across both sites were almost identical to those recorded following the baiting program in 2018. The decline in the detection rate following baiting was relatively low at 34% (0.71 to 0.47 feral cats per 100 CTN) on Yarraloola. However, this trend was also matched (35% decline) on Red Hill without any baiting (1.59 to 1.03 feral cats per 100 CTN between the two monitoring sessions).

• A total of 697 trap nights were conducted on Yarraloola in 2019. Five feral cats (2 F, 3 M) were trapped giving a capture success rate of 0.7%. The mean mass (± SE) of females was 3485 ± 555 g and males 4267 ± 138 g. All five feral cats were fitted with GPS/VHF radio-collars.

• In total, four out of 12 collared feral cats died from baiting (33.3% mortality rate). Only two of the eight collared feral cats that survived baiting in 2018 died following baiting in 2019 (25%), both were females. The survivors were five large males and one female. Of the four feral cats collared in 2019 that remained in the bait cell, the two lighter individuals died (50%; one of each sex) and the two larger animals survived (one male and one female). Preliminary analysis of the movement patterns of feral cats that survived baiting suggests
they all had multiple opportunities to encounter toxic baits as they passed through bait clusters.

- The three collared feral cats on Red Hill were still alive in September 2019.

Table 1: Summary of feral cat and northern quoll detections before and after baiting in 2019

<table>
<thead>
<tr>
<th></th>
<th>Yarraloola</th>
<th>Red Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-bait</td>
<td>Post-bait</td>
</tr>
<tr>
<td>Feral cat detections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of nightly detections</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Total number of camera sites with feral cats</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Northern quolls detections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of nightly detections</td>
<td>89</td>
<td>39</td>
</tr>
<tr>
<td>Total number of camera sites with quolls</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>Camera trapping effort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total camera trap nights</td>
<td>1474</td>
<td>1472</td>
</tr>
</tbody>
</table>

1.3.3 **2019 Analysis and Outcomes**

- The relative abundance of feral cats prior to the baiting program remained similar to that recorded after the winter baiting program in the previous year on Yarraloola. Hence, there was little evidence of a recovery in this population over the summer due to natal recruitment and/or immigration of animals from outside the baited cell. There was evidence that breeding did occur in spring 2018 with some obvious younger cats detected on camera traps across both stations in June 2019.

- There was no mortality amongst the three collared feral cats present on Red Hill. Whereas, four of the twelve (33%) collared feral cats present within the Yarraloola bait cell died within 17 days of the bait drop. Hence, the mortality rate of feral cats was reflected in the decline in detections on Yarraloola following baiting, but site occupancy increased. The reason for this inconsistency is not clear. It is possible that the low number of feral cat detections pre- and post-baiting meant that the power to detect a change in occupancy was compromised. Repeat feral cat detections at individual camera sites was also low on Yarraloola, with only one camera site occupied by cats during both monitoring sessions. Site fidelity was stronger on Red Hill with most (6 of 7) of the camera sites with feral cats in the post-bait session also recording them during the pre-bait session.

- The reasons to why feral cat occupancy/detection rates fell sharply between the monitoring sessions on Red Hill in both 2016 and 2019 in the absence of any control action is unknown. This highlights the importance of long-term monitoring to better understand natural variation in abundance over time. Factors that influence the mobility and activity levels of feral cats have the potential to impact site occupancy rates. For instance, the increasing day length after the winter solstice usually triggers the onset of breeding in female cats. Activity levels and movement may therefore decline after baiting as females give birth to kittens. Decreased movements due to the maternal care of kittens may have been responsible for the pattern observed in August 2016. Although it does not explain the decline in 2019 as most females likely did not breed due to the dry conditions.
• While some of the apparent anomalies in the camera monitoring over the past four years are not easily explained, the trends in feral cat abundances between the baited and unbaited sites were clear. Following the first large-scale bait drop in 2016, feral cat abundance and camera sites with cat detections were all lower on Yarraloola compared with Red Hill apart from June 2018 (pre-bait) when there was a re-invasion of the bait cell. The winter baiting greatly reduced (2016 and 2018) or lowered (2017 and 2019) feral cat abundance on Yarraloola to very low detection rates. In three of the four years, the detection rate of feral cats on Yarraloola following baiting was below 0.5 cats per 100 CTN, which is the equivalent of one cat detected in 250 camera trap nights. The only period where the post-bait level was greater (0.73 cats per 100 CTN) was in 2018. In that year, there was a feral cat re-invasion of Yarraloola between September 2017 and May 2018. The detection rate of feral cats prior to baiting in June 2018 peaked at 1.7 cats per 100 CTN.

1.4 NORTHERN QUOLL MONITORING PROGRAM

1.4.1 Proposed Monitoring Program

• The annual September cage trapping program was continued across the 18 sites on both Yarraloola and Red Hill to monitor northern quoll populations.

• Trapping generally coincided with the birth of quoll pouch young and hence allowed for the collection of this key demographic information. This timing is less suited to males, as post-mating mortality (die-off) of males begins in late July-August.

• At each trapping site, 20 small Sheffield cage traps baited with peanut butter, oats and sardines, were set in a linear transect (500 m) to trap quolls. Trap lines usually followed a landscape feature, such as a mesa edge or side, timbered riverine system or a drainage line in a gorge. Traps were placed in sheltered, shady locations and covered with a hessian bag and other vegetation, providing protection from heat and potential harassment from other animals. Rocks were placed on top of and around the sides of traps for stability and to provide additional cover.

• All trapped quolls were transferred into a capture bag and then scanned for the presence of an existing passive integrated transponder (PIT) implant. Each animal was then weighed, measured, sexed, and two small tissue samples were taken from an ear for DNA analysis. For females, reproductive condition was assessed and if present, pouch young were counted and measured. Each new quoll was implanted with a unique PIT to enable individuals to be identified.

• Northern quoll scats were collected from cage traps (first capture night to avoid contamination from bait consumption) and from around lures used for camera trapping as they actively mark (defecate) these places. Dingo and feral cat scats were collected during targeted searches of roadsides and cattle watering points. In addition, a quadbike was used on Yarraloola over three days in July to search minor station tracks and drill lines on Mesa G for feral cat and dingo scats. Predator scats encountered opportunistically were also collected.

1.4.2 2019 Northern Quoll Monitoring Output

Outputs of the monitoring are available in Appendix 1, with the high level outputs described below:

• Quolls were detected on 27 of the 60 cameras on Yarraloola during the pre-bait monitoring session. This was the highest rate recorded for the study. These patterns were the reverse on Red Hill, where there were higher detections of feral cats and fewer detections of quolls in 2019 being at their lowest for the study during the post-bait monitoring (Table 1).
For 2019, detection rates of quolls were particularly high and variable on Yarraloola prior to the baiting, as opposed to Red Hill where the rate was significantly lower. This year both populations suffered a sharp decline in detection rates in the monitoring session following the baiting. The overall trends in the detection rates of northern quolls were broadly similar to previous years across both study areas, whereby they were consistently higher on Yarraloola following the initial baiting program in July 2016. The magnitude of the decline in quoll detections on Red Hill in the post-bait monitoring sessions were always greater. The onset of the post-breeding die-off in male quolls provides a partial explanation for this decline each year, particularly on Red Hill. Baiting of feral cats on Yarraloola could potentially be reducing the predation risk faced by male quolls seeking out mating opportunities and/or prolong their lifespan during the die-off phase every though they may be in poor health.

Trapping effort for the annual September northern quoll monitoring program was consistent with the previous three years for Red Hill (1440 trap nights at 18 sites). For Yarraloola, the trapping effort was 1360 trap nights at 17 sites. Trap site R was abandoned after the setting of eight traps on the first night. There was not enough cover present for trapping as the area had been severely burnt. It is notable however, two quolls were captured in these eight traps (data not included in abundance estimates).

There was an overall decrease in the total number of individual northern quolls captured on Yarraloola and Red Hill, with fewer captured on Red Hill compared to Yarraloola (36 quolls compared to 59 quolls). Slightly more males were caught than females on both Yarraloola (31 M, 27 F) and Red Hill (21 M, 15 F).

The survival rate of tagged females from September 2018 to this year’s trapping session was 29% for Yarraloola (11 of 38; adjusted for Site R not being trapped) and 15% for Red Hill (5 of 33). One of the females (PIT 918017) recaptured at Site K on the edge of Mesa G along the Robe River was first captured in 2016, which means she is now at least our years old. None of the 89 marked males across both sites from the previous year were recaptured in 2019.

Long distance movements of several males were evident. One male on Yarraloola moved ~1 km each night for four nights as it travelled back and forth from Line M to N twice. Another male on Red Hill was caught at three different trap lines. It moved 9.13 km over five nights, starting at Line L, moving to PP and it was finally caught at Line J.

Capture rates of both males and females declined on Yarraloola from their previous peaks in 2018. The magnitude of the decline for females was not as great as that experienced on Red Hill, where capture rate fell by 55%. The capture rate of males on Red Hill remained lower than Yarraloola but unchanged from the previous two years. Male capture rates at the trap site level were highly variable across both areas ranging from none to seven individuals. Although no males were caught at over half the trapping sites on Red Hill.

Northern quolls on Yarraloola appear to have changed their dietary niche since feral cat control commenced. Prior to broad-scale baiting and during the first year of the baiting program, fruits featured as the second most eaten food group. The prevalence of fruit in their diet subsequently declined as quolls increased their intake of rodents in 2017 and 2018. Under the dry conditions in 2019, the frequency of rodents in the diet of quolls across the two stations declined, but it remained higher for quolls on Yarraloola (17.3% FOO) compared to Red Hill (6.2% FOO). The frequency of fruits eaten by quolls on Red Hill was higher in 2018-19, whereas quolls on Yarraloola preyed more heavily on invertebrates in these years.
1.4.3 2019 Analysis and Outcomes

- The overall capture rate of northern quolls during the September 2019 trapping session declined for the first time since large-scale baiting commenced in 2016. These declines were ~30% lower from the peaks reached in the previous year across both sites. Quoll capture rates remained higher on Yarraloola, with 4.26 individuals captured per 100 trap nights down from 6.04 individuals 100 TN-1 in 2018. The tally for Red Hill was ~40% lower than Yarraloola at 2.50 individuals 100 TN-1 (cf. 3.75 individuals 100 TN -1 in 2018).

- Captures of females remained higher within the feral cat baited treatment site compared with the reference site. They also suffered a lower rate of decline (28%) from the previous year, with the female capture rate falling by 55% from September 2018 to 2019 on Red Hill. The number of individual males captured on Yarraloola declined by 16% but remained higher than on Red Hill where there was no change from the 2017-18 capture rates.

- Summer rainfall patterns are a key driver of population fluctuations in northern quolls as this short-lived species is highly dependent on annual juvenile recruitment. For this four-year study there was only one year of high summer rainfall, which was in 2017. Hence, there was a strong population increase detected from 2016 to 2017, particularly on Yarraloola where quoll captures doubled. Quoll body masses were also heavier in this wetter year. There were good late autumn and early winter falls of rain in 2016 and 2018 but this was well after the period critical for newly weaned quolls in early summer.

- Rainfall for 2019 was well below average and the wet season was poor, particularly on Red Hill. Poor juvenile recruitment across both sites was likely to be a factor in the general decline in northern quoll populations. Disentangling the influences of feral cat control and differing rainfall patterns on quoll populations across the study areas is not straightforward. For instance, the dry conditions experienced in 2019 lead to a considerable delay in the birth of young, with only 2 of the 43 females examined having pouch young. In fact, some of the small females were yet to mate. This delay may have also caused a lag in male die-off in 2019, which could explain why the capture rates of males remained seemingly high despite the dry conditions. However, even with the well below average rainfall in 2019, quoll numbers were still higher on Yarraloola compared to Red Hill, indicating that they did benefit from feral cat control.

- Recaptures of marked quolls (PIT tags) also indicate that survival rates of adult females were higher with feral cat control for two of the three annual periods between trapping sessions. The annual survival rate of females on Yarraloola was higher for 2016-17 (50% cf. RH 35%) and 2018-19 (29% cf. RH 15%). For 2017-18 it was 30% for both sites. Additionally, we captured the oldest known wild female quoll at Site K on the Robe River on Yarraloola in 2019. This female was captured 12 times from September 2016 to 2019 (maximum opportunity to be trapped was 16 times).

- Wildfire is another factor that potentially dampened the response by northern quolls to feral cat baiting in 2019. Fire mapping for 2019 is yet to be completed but it is estimated that ~32% of northern quoll habitat was burnt on Yarraloola by hot summer fires between the 2018 and 2019 quoll trapping sessions. Up to six quoll trapping sites on Yarraloola were impacted by fire. Trapping at Site R was abandoned due to the lack of cover. In contrast, there were few summer wildfires on Red Hill that impacted on quoll habitat and only one site was burnt. Further analysis/research is required on the effects of fire on quoll populations as it is widely reported that feral cats respond to fire scars in northern Australia, where they can take a heavy toll on fauna populations in burnt sites that lack adequate cover to protect them from predation. Interestingly, Site P on the southern side of the Pannawonica road was severely burnt in late December 2018, but then four female and four male quolls were captured there in September 2019. Likewise, only eight traps were set at Site R for a single night and two quolls were captured, indicating this species is well adapted to fire.
1.4.4 Future directions: strategic feral cat management

The future challenge is how to transition from the management of a bait naïve feral cat population to a feral cat population with an increasing number of bait smart adult males. A more strategic adaptive management approach that accounts for the unpredictable behaviour of feral cats is needed. A combination of aerial and targeted ground-baiting by hand may be more effective than uniform aerial baiting across the entire LMA. Creating feral cat "sinks" in areas less critical to threatened species, and in areas where feral cats prefer, such as lowland plains areas, could be achieved by targeted aerial baiting. Additionally, ground baiting in high density feral cat prey locations, such as along waterways, may increase exposure of feral cats to the baits. Complementing baiting with leg-hold trapping is required to remove bait-shy individuals. A cost-saving option may be to avoid baiting altogether after high-rainfall periods as prey abundance will be high (e.g. influx of nomadic ground nesting birds) and feral cats are less likely to take baits. New audio and other types of prey cues designed to attract feral cats from further distances into areas with control devices could also be tested.

Based on these outputs and outcomes the Proponent considers that the objective of Action 2 has been met.
2 INTRODUCED HERBIVORE MANAGEMENT

Goal: To enhance northern quoll and Pilbara olive python habitat through a reduction in feral cattle within the LMA.

2.1 ACTION 3: MUSTER TO REMOVE FERAL CATTLE ACROSS THE LMA

2.1.1 Management Objective

Reduce the number of feral cattle and their impacts within the LMA through periodic mustering.

2.1.2 Proposed Method

The following measures were proposed in the TSOP:

- Aerial mustering will be supported by a ground-based team using vehicles (buggy and motorcycle). Cattle will be mustered to existing paddocks and yards within Yarraloola Station or Red Hill Station.

- Areas of good or moderate pastoral potential will be targeted as well as areas proximal to surface water and/or offering protection and shade.

- Yarraloola Station mustering activities will be expanded to incorporate UCL in the southeast as well as parts of Yarraloola Station that are otherwise considered un-economical to muster.

- Musters will be planned in consultation with station management, mustering contractors and in collaboration with neighbouring stations as appropriate.

2.1.3 2019 Program Output

The outputs from the 2019 muster are detailed below:

- A total of 969 cattle were mustered, of these, 470 were released back onto the land, with the other 499 removed to market.

2.1.4 2019 Analysis and Outcomes

There was an increase in cattle mustered in 2019 compared to 2018, and total cattle removed increased.

The Proponent is in the process of completing the 2019 Land Condition Monitoring survey and results will be provided once monitoring is complete and results analysed.

2.2 ACTION 4: CULL OF FERAL INTRODUCED HERBIVORES

No cull was required or initiated within the LMA during 2019 as the muster undertaken was successful in removing 499 cattle from Yarraloola Station to market.

Based on these outputs and outcomes the Proponent considers that the objective of Action 4 has been met.
3 WILDFIRE MANAGEMENT

Goal: To monitor and, where necessary, manage fire in the LMA in a manner that maintains or enhances its current relatively benign impacts on northern quolls, Pilbara olive pythons and their habitats.

3.1 ACTION 5: FIRE REGIME MONITORING

3.1.1 Management Objective

To monitor the frequency and extent of fire within the LMA and, if necessary, to undertake measures which reduce the risk of fire disproportionally affecting northern quoll and Pilbara olive python habitat within the LMA.

3.1.2 Proposed Method

The following measures were proposed in the TSOP:

- Fire monitoring across the LMA will utilise a combination of desktop-based GIS analysis of remotely sensed data and field monitoring methods.

- Monitoring of fire-related parameters planned as part of the TSOP will build a high resolution picture of key fire history parameters across the LMA and will seek to elucidate the relative contribution of natural, accidental and prescribed ignition to the fire regime within the LMA (of critical importance in determining the required patterns of any future prescribed burning).

- Monitoring will facilitate the development of targeted management actions if monitoring demonstrates such actions are required.

- If monitoring demonstrates actions are required, Rio Tinto (on behalf of the Proponent) will consult with relevant stakeholders to develop a Fire Management Plan with an objective of reducing the risk of a single wildfire affecting a large proportion of the LMA.

3.1.3 2019 Program Output

The Proponent is in the process of completing the 2019 fire regime monitoring and results will be provided once monitoring is complete and results analysed.
4 WEED CONTROL

Goal: To understand the diversity and distribution of weeds within the LMA and the potential implications for the management of northern quoll and Pilbara olive python habitat.

4.1 ACTION 6: MONITORING OF WEEDS OF LAND MANAGEMENT AREA

4.1.1 Management Objective

To monitor the diversity and extent of weeds and, if necessary, undertake measures to minimise their impact on northern quoll and Pilbara olive python habitat within the LMA.

4.1.2 Proposed Method

The following weed monitoring measures were proposed in the TSOP:

- Weed monitoring will be undertaken across the LMA in order to track changes in the richness and extent of exotic plant species. Monitoring effort will be focused within habitats important for Pilbara olive python and northern quoll and known to be susceptible to weed establishment (e.g. riparian habitats).

- Weeds will be monitored as a component of the suite of land condition parameters.

- Photo reference points and point-intercept transects will be the primary methods used to monitor changes in weed diversity and cover/abundance over time.

- Weed Record Points (WRP) will be completed opportunistically as a means of recording new weeds or new occurrences of weed species across the LMA. WRPs will consist of a 5 x 5 m quadrat within which the cover of all weed species will be recorded.

- The results of monitoring will be evaluated to determine whether active control is warranted in priority areas of northern quoll and Pilbara olive python habitat.

In 2017 it was decided to change to rangeland condition monitoring as the mechanism to evaluate improvements in habitat condition as the vegetation condition for the Northern quoll habitat was generally found to be “good to excellent”.

4.1.3 2019 program output

The Proponent is in the process of completing the 2019 rangeland vegetation condition monitoring and results will be provided once monitoring is complete and results analysed.
5 TSOP EXPENDITURE

In accordance with Condition 15 of EPBC 2011/5815 and Condition 7 of MS 1038, the Proponent provides the following breakdown of expenditure regarding the implementation of the TSOP over 2014 – 2019:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RTIO employee related costs</td>
<td>$258.50</td>
<td>$490.00</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$748.5</td>
</tr>
<tr>
<td>Contractors</td>
<td>$1,109.09</td>
<td>$110,031.33</td>
<td>$25,427.45</td>
<td>$0</td>
<td>$1,950.00</td>
<td>$0</td>
<td>$138,517.87</td>
</tr>
<tr>
<td>External Services</td>
<td>$135,420.00</td>
<td>$204,970.00²</td>
<td>$604,803.13</td>
<td>$419,907.05</td>
<td>$654,899.17</td>
<td>$552,788.95</td>
<td>$2,572,788.30</td>
</tr>
<tr>
<td>Travel and related expenses</td>
<td>$3,951.62</td>
<td>$48,922.64</td>
<td>$44,301.86</td>
<td>$1,554.12</td>
<td>$60,917.89</td>
<td>$42,256.15</td>
<td>$212,904.28</td>
</tr>
<tr>
<td>Other operating costs</td>
<td>$6,148.80</td>
<td>$612.12</td>
<td>$140</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$6,900.92</td>
</tr>
<tr>
<td>Total</td>
<td>$140,739.21</td>
<td>$370,562.77</td>
<td>$675,144.56</td>
<td>$432,601.17</td>
<td>$717,767.06</td>
<td>$595,045.10</td>
<td>$2,931,859.87</td>
</tr>
</tbody>
</table>

²There was an incorrect accrual of $85,020 accounted for in previously reported 2015 External Services spend which has also been accounted in 2016’s spend. Data has been corrected and total spend is correct in this report.
6 REFERENCES

7 APPENDICES

Predator Control Baiting and Monitoring Program, Yarraloola and Red Hill, Pilbara Region, Western Australia

2019 Annual and Final Report – Year 5

Russell Palmer, Hannah Anderson and Brooke Richards

Biodiversity and Conservation Science
April 2020
Contents
Acknowledgments ... vii
Executive summary ... viii
1 Introduction .. 1
 1.1 Project background ... 1
 1.2 Introduced Predator Management .. 2
 1.2.1 Management goal ... 2
 1.3 Action 1 – Northern quoll Eradicat® feral cat bait uptake and survivorship study 2015 ... 2
 1.3.1 Management objective ... 2
 1.3.2 Background and research undertaken in 2015 ... 2
 1.4 Action 2 – Introduced predator control program 2016–19 3
 1.4.1 Management objective ... 3
 1.4.2 Operational broad-scale feral cat baiting ... 3
 1.4.3 Study aims for 2019 ... 3
2 Methods .. 5
 2.1 Study sites ... 5
 2.1.1 Rainfall ... 5
 2.1.2 Fire .. 7
 2.2 Study design and timing ... 8
 2.3 Feral cat monitoring ... 9
 2.3.1 Camera trap design and occupancy modelling ... 9
 2.3.2 Trapping and collaring methods .. 10
 2.3.3 Monitoring and mortality rates of feral cats fitted with radio-collars 11
 2.4 Baits and baiting .. 14
 2.4.1 Eradicat® baits ... 14
 2.4.2 Bait cell modifications ... 14
 2.4.3 On ground coordination and notifications .. 14
 2.4.4 Aerial baiting ... 14
 2.5 Northern quoll monitoring .. 15
 2.5.1 Trapping methods .. 15
 2.5.2 Statistical analysis of quoll data .. 15
 2.6 Predator diets ... 16
 2.7 Other incidental/opportunistic records .. 16
3 Results .. 16
 3.1 Feral cat baiting ... 16
 3.1.1 Detection of non-target species deaths .. 16
 3.2 Camera trap monitoring .. 18
 3.2.1 Site occupancy of feral cats .. 18
 3.2.2 Detection rates of feral cats and northern quolls .. 20
 3.2.3 Feral cat and northern quoll detections at the camera trap site level from 2016 to 2019 ... 20
 3.2.4 Opportunistic detections of dingoes on camera traps for 2019 20
 3.3 Feral cat trapping and collaring .. 22
 3.3.1 Trapping and radio-collaring .. 22
 3.3.2 Fate of surviving feral cats collared in 2018 ... 23
 3.3.3 Monitoring and mortality of collared feral cats ... 23
 3.3.4 Home range analysis ... 23
 3.4 Northern quoll monitoring (trapping) .. 26
 3.4.1 Quoll trapping, number of individuals captured and survivorship 26
 3.4.2 Capture rates of northern quolls .. 26
 3.4.3 Northern quoll body mass and litter size ... 28
 3.4.4 Non-target captures in quoll traps .. 29
 3.5 Predator diets .. 30
 3.5.1 Overall comparison of dingoes, feral cats and northern quolls 30
 3.5.2 Feral cat diet ... 31
 3.5.3 Northern quoll diets ... 32
 3.5.4 Dingoes .. 34
 3.6 Other incidental/opportunistic records .. 34
4 Discussion .. 35
 4.1 Winter baiting program .. 35
 4.2 Effectiveness of Eradicat® baiting .. 35
 4.2.1 Feral cat numbers leading into the 2019 baiting program 35
 4.2.2 Baiting efficacy ... 35
 4.3 Population response by northern quolls to feral cat control 38
 4.3.2 Northern quoll abundance before and after Eradicat® baiting 40
 4.4 Predator interactions and potential indirect benefits to quolls from feral cat control ... 41
4.4.1 Intraguild predation... 42

4.5 Future directions: strategic feral cat management 42

References ... 44

Appendices ... 48

Appendices
Appendix 1 Field work program for 2019... 48
Appendix 2 Northern quoll capture results for 2019......................... 49
 Capture data and capture metric summaries for northern quolls per trapping site on the Yarraloola LMA ... 49
 Capture data and capture metric summaries for northern quolls per trapping site on Red Hill ... 50
Appendix 3 Incidental and opportunistic records 51
Appendix 4 Volunteer engagement 2019 .. 52
Appendix 5 TSOP outputs and engagement summary 53

Figures
Figure 1. Location of the Yarraloola LMA and Red Hill in the Pilbara region of Western Australia ... 4
Figure 2. Monthly rainfall (bars) relative to the monthly long-term average (1971 onwards = dotted line) from 2015 to 2018 for a) Pannawonica (mean annual rainfall = 405 mm) and b) Red Hill (mean annual rainfall = 396 mm). 6
Figure 3. Total area (ha) of the Yarraloola LMA and Red Hill burnt per year from 2015 to 2018. Annotated percentages are the percent of northern quoll and Pilbara olive python habitat burnt. Total area of northern quoll and Pilbara olive python habitat for Yarraloola and Red Hill was estimated to cover 65,665 ha and 53,630 ha, respectively. .. 7
Figure 4. Annual fire scars for 2016 to 2018 within the Yarraloola LMA. ... 8
Figure 5. Feral cat camera and northern quoll trapping locations on the Yarraloola LMA baited site. ... 12
Figure 6. Feral cat camera and northern quoll trapping locations on the Red Hill reference site. ... 13

Figure 7. The Yarraloola LMA bait cell (black bold line) for 2019 and the distribution of baits on the 8 and 9 July. The bait exclusion areas within the LMA are bounded by a bold black line. The outer red line is the Yarraloola LMA boundary. 17

Figure 8. Modelled proportion of sites occupied (mean ± SD) by feral cats before and after baiting in treatment (Yarraloola) and reference (Red Hill) sites for 2016 to 2019 with (a) random effects and (b) spatial component. 19
Figure 9. Mean detection rate (mean number of events per 100 camera trap nights per camera trap site) of feral cats and northern quolls on Yarraloola (a) and Red Hill (b) prior to and after the winter baiting program on Yarraloola from 2016 to 2019. ... 21

Figure 10. Number and cumulative number of cat camera sites with feral cat and northern quoll detections on Yarraloola (a) and Red Hill (b) for each pre- and post-bait monitoring session from 2016 to 2019. ... 22

Figure 11. Feral cat minimum convex polygons (MCP) showing 95% home range area on a) Yarraloola and b) Red Hill. Each cat was assigned a code name/number, ‘M’ indicates male and ‘F’ female. ... 24

Figure 12. Total number and capture history of individual female (a) and male (b) northern quolls captured per 18 trap sites (1440 trap nights) on Yarraloola (baited) and Red Hill (reference) from 2016 to 2019. * For 2019, Site R on Yarraloola was not trapped (17 trap sites and 1360 trap nights). ... 27

Figure 13. Mean (+ SE) number of individual female (a) and male (b) northern quolls captured per trap site (20 traps set for 4 consecutive nights) at Yarraloola and Red Hill from 2015 to 2019. For 2016-19 there were 18 sites trapped at each site in September, apart from Yarraloola 2019 when there were 17 sites trapped. For 2015, trapping was spread from August to October (Yarraloola 11 trap sites, Red Hill 10 trap sites). * Males for 2015 were excluded as some sites were trapped in early August before the male die-off. ... 28

Figure 14. Body mass (g) of female and male northern quolls captured at monitoring sites from 2016 to 2019 at Yarraloola and Red Hill. Band inside the box represents the median value, box boundaries the 25th and 75th percentiles, whiskers the 10th and 90th percentiles and filled circles represent outliers. 29

Figure 15. Mean (+ SE) number of common rock-rats captured per quoll monitoring site at Yarraloola and Red Hill for 2015 to 2019 ... 30

Figure 16. Relative volume of food groups in the diets of dingoes, feral cats and northern quolls for 2015 to 2019. Parentheses show sample sizes. 31

Figure 17. Comparative diet of feral cats on Yarraloola from 2016 to 2019. Diets are shown in terms of relative volume of each food group in the scats. Parentheses show sample sizes. ... 32

Figure 18. Comparative diets of northern quolls for (a) Red Hill and (b) Yarraloola (2015-2019). Diets are shown in terms of frequency of occurrence of each food group in the scats. Parentheses show sample sizes ... 33

Figure 19. Relative volume of food groups in the diets of dingoes for Yarraloola (2016-2019) and Red Hill (2017-2019). Parentheses show sample sizes. Reptiles and Fruits/Grasses were excluded as these groups were rarely eaten. 34
Tables
Table 1. Summary of camera trap sessions before and after baiting in 2019........ 18
Table 2. Capture date, demographics, home range size and status of feral cats trapped on Yarraloola and Red Hill 2018-19... 25
Table 3. Robe River Kuruma field staff involvement according to year and number of days worked during the TSOP. The number of field trips per year in parentheses. .. 53
Acknowledgments

This study was undertaken as part of a Threatened Species Offset Plan (TSOP) funded by Rio Tinto. The TSOP scope of work for 2019 was developed in liaison with Martin Buck and Martin Salm (Rio Tinto). Martin Salm and Phoebe Sampson facilitated the field work and other project logistics for Pannawonica and the Yarraloola Land Management Area (LMA).

The Department of Biodiversity, Conservation and Attractions (DBCA) Regional Office in Karratha monitored our safety when in the field and provided logistical support. The Rio Tinto Robe Valley emergency services team were on standby in the event search and rescue services for our field teams were required on site.

We thank Digby, Leanne and Dylan Corker for permission to access Red Hill pastoral lease. Australian Premium Iron (APIM) provided in-kind support for our operations at Red Hill. Phil Davidson, Jacqueline Waapu-Ruawai, Richard Galloway, Frank Hoppe, Vi Saffer, Darren Varcoe and Stefan Woodtli facilitated visits and accommodation at Cardo Camp at Red Hill. The Robe River Kuruma (RRK) people provided access to their traditional lands on Yarraloola and Red Hill pastoral leases.

Ashley Millar, Gary Edwards and Shane Morse of the Parks and Wildlife Service, Western Shield team coordinated the aerial baiting program. Alicia Whittington (DBCA, Pilbara region) managed the aerial baiting notifications and landholder liaisons. Alicia Whittington and Lucy Clausen organised the helicopter tracking sessions of the collared feral cats. We are grateful for the field assistance provided by RRK traditional owners Eden Bobby, Joshua Evans, Eugene Evans, Arnold Bobby and Royce Evans.

We thank volunteers Arlen Hogan-West, Amelia Catterick-Stoll, Ashleigh Johnson and Sam Edwards for their hard work and commitment.

Thank you to DBCA staff that assisted during the year including Neal Birch, Mel Mykytiuk, Kate Rick, Jeff Pinder, Abby Thomas and Zac Simms. We are appreciative of the efforts of Jason Fletcher in teaching us the art of trapping feral cats. Sarah Comer (DBCA) performed the occupancy modelling.

Drafts of this report were reviewed by Lesley Gibson (DBCA), Jason Rossendell (Rio Tinto) and Tessa Elvy (Rio Tinto).

The following permits were obtained to conduct this work:

- Department of Biodiversity, Conservation and Attractions Animal Ethics Committee permits AEC 2015/16 and 2018/04.
- The Australian Pesticides and Veterinary Medicines Authority issued PER14758Ver2 allowing the use of the Eradicate® feral cat bait on the Yarraloola LMA 2016-2019.
Executive summary

Predation by feral cats continues to pose a major threat to native wildlife on the Australian mainland. Stemming the damage they cause remains an ongoing challenge for conservation practitioners. Accordingly, development of approaches aimed at delivering effective feral cat control at the landscape scale are both a policy and management priority of governments. As part of the conditions of an environmental offset, Rio Tinto developed a Threatened Species Offset Plan (TSOP) to implement management actions to benefit the endangered northern quoll (*Dasyurus hallucatus*) in the western Pilbara. Controlling feral cats at a landscape scale within the Yarraloola Land Management Area (LMA) to reduce their impact on northern quolls and other threatened fauna was a core component of the TSOP.

This report discusses the methods and results for 2019, the final year of the operational broad-scale feral cat control program (TSOP - Phase 2), in the context of results from the previous three years. In contrast to previous years, seasonal conditions were particularly poor in 2019, with well below average rainfall across the region. There were also extensive wildfires on Yarraloola following dry lightning storms over the summer.

Aerial baiting of the Yarraloola LMA took place on the 8-9 July, covering an area of 142,036 ha. The aircraft dropped 70,850 *Eradicat*® in 1417 bait clusters. Monitoring of feral cats exposed to baits revealed a 34% decline in their detection rate on camera traps and a 33% mortality rate of radio-collared adult feral cats. The detection rate of feral cats on Yarraloola following the baiting was very low (~0.5 cats per 100 camera trap nights (CTN)), which equates to approximately one feral cat detection in 250 camera trap nights. This result was consistent with the three previous years, with baiting reducing feral cat populations to similarly low levels. The dry conditions were likely to have enhanced baiting efficacy through improved uptake by younger feral cats and adult females. Notably, several collared females that had survived the previous year’s baiting operation, when rodent prey were plentiful, succumbed to baiting in 2019. The relative abundance of feral cats at the Red Hill reference site were consistently higher than that for Yarraloola once baiting commenced. The exception being the first half of 2018, following re-invasion by feral cats of the baited cell.

There was no evidence that feral cat control using *Eradicat*® baiting negatively impacted the co-occurring northern quoll populations. The detection rates of northern quolls immediately prior to and immediately following each baiting program remained stable in all years apart from 2019. The decline in the northern quoll population following the baiting in 2019 was potentially due to increased predation pressure from feral cats due to their dietary shift as rodent populations collapsed. Roughly 20% of cat scats collected at this time on Yarraloola contained northern quoll remains.

The overall capture rate of northern quolls during the annual September trapping program in 2019 were ~30% lower than the previous year. Female quoll capture rates on Red Hill were particularly low, falling to 0.83 individuals per 100 trap nights,
the lowest level during the study. Female quoll numbers (1.59 individuals per 100 trap nights) remained higher under the feral cat control regime on Yarralooloo. The annual survival rates of tagged adult female quolls between trapping sessions were higher on Yarralooloo for two of the three stages (2016-2017 and 2018-2019). Also of note was the capture of a marked female for the fourth consecutive year in the centre of the baited cell in 2019. This is the oldest known wild female northern quoll. The abundance of male quolls was also higher on Yarralooloo from 2017 onwards.

There were strong indications that northern quolls were benefitting indirectly from reduced competition with feral cats on Yarralooloo. A marked dietary shift from protein-poor food sources [fruits] to the consumption of more rodents was detected following the implementation of the baiting program. Northern quoll diets on Red Hill remained largely unchanged for the duration of the study.

Finally, we make recommendations regarding the adoption of a strategic feral cat management program better designed to address the future challenge of effectively managing a formerly bait naïve feral cat population to a feral cat population with an increasing number of bait smart adult males.
1 Introduction

1.1 Project background

The Yandicoogina Junction South West and Oxbow Iron Ore Expansion Project located in the central Pilbara region of Western Australia was approved by the State and Commonwealth Governments (Ministerial Statement 914 and Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) Decision Notice 2011/5815, respectively), both of which were subject to a number of offset conditions. The Commonwealth required Rio Tinto to develop and implement a Threatened Species Offset Plan (TSOP) to benefit the EPBC Act listed northern quoll (*Dasyurus hallucatus*) and Pilbara olive python (*Liasis olivaceus barroni*; Rio Tinto 2014). The defined offset area selected was the Yarraloola Land Management Area (LMA) in the western region of the Pilbara (Figure 1). The LMA encompasses the Yarraloola pastoral lease to the east of Northwest Coastal Highway and a smaller area of adjoining unallocated crown land (Rio Tinto 2014).

Introduced predator management was the core component of the TSOP (Rio Tinto 2014). The plan focuses on the control of feral cats given their significant threat to Australian fauna (Woinarski *et al.* 2014; 2015) and is consistent with the policy and management priorities outlined by the Threat Abatement Plan for Predation by Feral Cats and the Threatened Species Strategy for Australia (Commonwealth of Australia 2015a & b). In Western Australia, baiting with the *Eradicat*® bait containing 4.5 mg of the toxin sodium fluoroacetate (1080) is the most effective and efficient method for controlling feral cats at the landscape scale where there is limited risk posed to non-target species (Algar *et al.* 2007 & 2013; Comer *et al.* 2018; Lohr and Algar 2020). This bait is not currently approved for operational use in areas of Western Australia where potential non-target species occur, such as the carnivorous northern quoll, due to the potential risk of toxic bait consumption.

The northern quoll is the largest predatory dasyurid remaining in northern Australia (Cramer *et al.* 2016). Its distribution formerly extended across the northern third of Australia, but it now only occurs in smaller disjunct populations across this range in Queensland, the Kimberley and Northern Territory, and areas throughout the Pilbara of Western Australia (Braithwaite and Griffiths 1994; Cramer *et al.* 2016; Moore *et al.* 2019). In 2005, the northern quoll was listed as an endangered species under the Commonwealth’s EPBC Act. Predation by feral cats has contributed to their decline and continues to pose a severe threat to mainland quoll populations (Braithwaite and Griffiths 1994; Hill and Ward 2010; Woinarski *et al.* 2014).

Key threats such as predation by introduced predators, habitat loss and fragmentation, and the likely future invasion of the poisonous cane toad (*Rhinella marina*) have been identified as serious risks to the Pilbara region populations (Cramer *et al.* 2016).
1.2 Introduced Predator Management

The implementation of an introduced predator control program that focused on large-scale deployment of baits to control feral cats was considered the optimal management action to benefit the northern quoll and Pilbara olive python within the Yarraloola LMA (Rio Tinto 2014). Actions under this section of the TSOP program were divided into two parts. In order to identify and resolve any potential non-target bait impacts to northern quolls, an Eradicat® baiting field trial was planned for the first year of the study, prior to the commencement of the operational scale predator control program.

1.2.1 Management goal

To enhance northern quoll and Pilbara olive python populations (and populations of other native fauna) and their habitat through a reduction in introduced predators (principally feral cats but also foxes and wild dogs) within the Yarraloola LMA (page 30; Rio Tinto 2014).

1.3 Action 1 – Northern quoll Eradicat® feral cat bait uptake and survivorship study 2015

1.3.1 Management objective

To assess the field uptake of feral cat baits Eradicat® by northern quoll and its impact on their survivorship and reproduction, and to subsequently develop an effective introduced predator control strategy that will benefit the northern quoll and other threatened fauna in the Yarraloola LMA (page 30; Rio Tinto 2014).

1.3.2 Background and research undertaken in 2015

According to 1080 dosage rate trials, northern quolls have a moderate tolerance to compound 1080 (LD50 7.5 mg/kg; King et al. 1989). Although due to their small body size in the Pilbara (average of 360-600 g), the ingestion of a single Eradicat® bait (4.5 mg of 1080) could place them at risk of lethal poisoning. Calver et al. (1989) identified that in the laboratory, northern quolls were at risk from accidental poisoning from crackle baits containing 6 mg of 1080 for dingo control. However, there is an extensive literature demonstrating that theoretical risk derived from the above mentioned approaches rarely translates to actual risk faced by free-ranging native carnivores and other non-target species under field situations (King 1989; Körtner et al. 2003; Körtner and Watson 2006; Claridge and Mills 2007; Körtner 2007). Hence, these discrepancies between estimated bait toxicity and actual poisoning of quolls require resolution under field conditions (Jones et al. 2014).

The precautionary approach was applied here and the recommended pathway of monitoring the fate of individual northern quolls during an actual Eradicat® baiting campaign was undertaken in 2015. A full account of this study is found in Morris et al. (2015) and Cowan et al. (in press).

Briefly, 21 quolls were captured and fitted with radio-collars within a 20,000 ha experimental treatment cell on Yarraloola. This cell was then aerial baited with
Eradicat® in July 2015 and the fate of these quolls was closely monitored. No deaths of radio-collared northern quolls were attributed to 1080 poisoning and females showed no acute effects of sublethal poisoning based on reproductive output. The conclusion being that aerial feral cat baiting programs using Eradicat® during winter were unlikely to pose a hazard to free ranging northern quolls (Morris et al. 2015; Cowan et al. in press).

1.4 Action 2 – Introduced predator control program 2016–19

1.4.1 Management objective

To improve northern quoll and Pilbara olive python habitat within the Yarraloola LMA through a reduction in the abundance of introduced predators (page 35; Rio Tinto 2014).

1.4.2 Operational broad-scale feral cat baiting

Based on the above, the project entered the operational phase and annual winter aerial baiting with Eradicat® baits over ~145,000 ha of the Yarraloola LMA commenced in 2016 (Morris and Thomas 2014). Additional safeguards were built into the monitoring program, particularly for northern quolls. Approval was granted by the APVMA to amend the Research Permit (PER14758) to increase the area of the bait cell from 20,000 ha to 163,000 ha for 2016 to 2019. Here, we primarily discuss the methods and results of 2019, with a summary of the findings over the past four years of operational feral cat baiting. Previous information is contained in the annual reports (Palmer et al. 2017; Palmer and Anderson 2018; Palmer et al. 2019).

1.4.3 Study aims for 2019

The project for 2019 was largely a continuation of the baiting and monitoring programs established in 2016. Due to ongoing concerns regarding the effectiveness of the camera trap monitoring method used to measure change at very low feral cat densities, we continued the cat collaring and radio-tracking component of the study that was introduced in 2018. Radio-telemetry allowed for independent verification of feral cat mortality rates due to winter baiting.

Aims were to:

1) conduct the fourth annual broad-scale aerial baiting program using Eradicat® baits targeting feral cats in the Yarraloola LMA;
2) assess effectiveness of this baiting program to reduce feral cat populations within the baited cell through camera trap monitoring and radio telemetry;
3) assess the potential non-target impacts and/or benefits of broad-scale feral cat baiting on northern quoll populations by comparing their abundance, survivorship and demographics over time within a treatment (Yarraloola - baited) and reference site (Red Hill - unbaited); and
4) monitor the potential indirect benefits of reduced feral cat numbers for northern quolls by investigating changes to the ecological niche of northern quolls (dietary and habitat shifts) in the treatment site (cat baited) compared with the reference site.
Figure 1. Location of the Yarraloola LMA and Red Hill in the Pilbara region of Western Australia
2 Methods

2.1 Study sites

The study was undertaken on two pastoral leases, Yarraloola LMA (~150,000 ha) and Red Hill (~190,000 ha), in the western Pilbara region of Western Australia (Figure 1).

2.1.1 Rainfall

These sites experience a semi-arid climate typical of the Pilbara bioregion. Summers are very hot and winters mild. Rainfall is characteristically extremely variable and follows a loose bi-modal rainfall pattern with most of the rain falling during January, February and March in association with tropical cyclone and heat trough events. Tropical cyclones typically deliver large falls of rain over extensive areas whereas thunderstorm events associated with heat troughs are more localised. A second, smaller rainfall peak occurs in May and June as a result of southern frontal systems which are at their northern extent of influence over the area (Figure 2).

Average annual rainfall for Pannawonica and Red Hill from 1971, when records commenced for Pannawonica, is ~400 mm (Australian Bureau of Meteorology 2019). The rainfall patterns since the study commenced in 2015 reflects this variability (Figure 2). Annual rainfall totals for 2015 to 2016 were reasonably close to the long-term averages. A tropical low passed over the study area in February 2017 delivering 319 mm to Pannawonica and a yearly total of 538 mm.

Much of the rain that fell in the summer of 2018 was associated with localised thunderstorm activity. A frontal rain system then delivered significant rainfall in early June across the entire study area. However, totals received at the recording stations at Pannawonica (323 mm) and Red Hill (336 mm) were below the annual average (Figure 2). Rainfall for 2019 was well below average across both sites, particularly on Red Hill where it was less than half the annual average.
Figure 2. Monthly rainfall (bars) relative to the monthly long-term average (1971 onwards = dotted line) from 2015 to 2018 for a) Pannawonica (mean annual rainfall = 405 mm) and b) Red Hill (mean annual rainfall = 396 mm).
2.1.2 Fire

Fire scars were mapped annually as part of the TSOP project (Chapman and Zdunic 2019a and b). Fire regimes were relatively benign in terms of the areas of northern quoll and Pilbara olive python habitat burnt from 2015 to late in 2018 (Figure 3 and Figure 4). In the last week of December 2018, dry lightning storms over Yarraloola triggered the ignition of numerous fires, resulting in significant areas of northern quoll and Pilbara olive python habitat being burnt. In addition to the data provided in Figure 3, there were further fires on Yarraloola in January/February 2019 that burnt the eastern section of the site along the Robe River, Mesa H and the northern end of the Hamersley Range across to Quoll trap sites J and I. An estimated 5,000 ha of northern quoll and Pilbara olive python habitat was burnt, which equates to roughly 32% of this habitat being severely burnt in hot fires over the summer.

In contrast, wildfires burnt relatively minor areas of northern quoll and Pilbara olive python habitat on Red Hill for the duration of the study (Chapman and Zdunic 2019a).

The quoll trapping sites selected for monitoring in 2015 and 2016 were all unburnt at the time. Fires subsequently impacted the following sites on Yarraloola; December 2016 (Site F partially burnt), January 2017 (Site K entirely burnt): December 2018 (Sites A, P and R completely burnt), and January/February 2019 (Site O mostly burnt, Site J partially burnt, and Site I burned up to the base of the Mesa). Fewer trap lines were impacted by fire on Red Hill, with Sites G and M burnt in December 2016 and Site L burnt in November 2018.

![Figure 3. Total area (ha) of the Yarraloola LMA and Red Hill burnt per year from 2015 to 2018. Annotated percentages are the percent of northern quoll and Pilbara olive python habitat burnt. Total area of northern quoll and Pilbara olive python habitat for Yarraloola and Red Hill was estimated to cover 65,665 ha and 53,630 ha, respectively.](image-url)
2.2 Study design and timing

This project was designed around the optimal time for baiting of feral cats, which is when they are mostly likely to encounter and consume bait. For the Pilbara, this occurs during the coolest period in winter (July) when bait uptake by feral cats is maximised due to the low abundance and activity of prey, particularly reptiles (Algar and Burrows 2004). Bait degradation due to rainfall, ant attack, and hot weather is also reduced at this time of the year.

Previously, the Pilbara Regional Biosecurity Group aerially baited both stations for dingoes and their hybrids (hereinafter ‘dingoes’) during their annual Pilbara-wide program implemented in September. This program was discontinued over the study area in 2016. Dingo control was largely undertaken via ground-based methods by the pastoralists as required under the Biosecurity and Agriculture Management Act 2007. Eradicat® feral cat baits are lethal to canids.

The field work program for 2019 is outlined in Appendix 1.
2.3 Feral cat monitoring

2.3.1 Camera trap design and occupancy modelling

The camera trapping approach of Comer et al. (2018) was broadly followed to monitor feral cats on both study sites (Yarraloola - baited and Red Hill - unbaited reference) before and after the July baiting operation (full details in Palmer et al. 2017; Palmer and Anderson 2018). Briefly, 60 cat camera trap sites were established at each of the study sites in a semi-randomised fashion from the existing road networks. Cameras were situated within walking distance of a road (50 m to 400 m either side) and at least 3 km from the closest neighbouring camera (Figure 5 & 6). The layout of the cat camera sites can be seen in Plate 1.

Each camera (Reconyx HyperFire™ PC900) was programmed on ‘Aggressive’ to take five pictures at up to two frames per second upon a trigger. A ‘lure pole’ with visual and olfactory lures for feral cats was set 3 m in front of each camera. The olfactory lure consisted of a vial containing 15 ml of ‘Catastrophic’ scent lure in an oil suspension (Outfoxed Pest Control, Victoria), attached to a stake approximately 30 cm from the ground. Also attached to this stake, was a 1.5 m long metal curtain rod with three white turkey feathers taped obliquely at its midpoint and a 30 cm length of silver tinsel secured to the top of the rod. Vegetation was trimmed from the detection zone of the camera to minimize false triggers caused by moving plants.

Cameras were set in mid-June, allowing for 25 nights of monitoring on each camera trap before the baiting commenced on the 8 July. Three weeks following baiting, cat cameras were redeployed (30 July) and then collected during the quoll trapping trip in September. During the period between the two monitoring sessions, cameras and lures were removed to prevent feral cats from becoming accustomed to them.

All images from the camera traps were uploaded into the ‘CPW Photo Warehouse’ program for processing and fauna species were identified (Ivan and Newkirk 2016). Date and time-stamp information from each image was captured by this program ensuring an accurate time of day for each image. Interference from inquisitive cattle and crows resulted in some cameras being rendered inoperable for parts of survey periods. Sampling effort was adjusted in the analysis according to the date and time-stamp data.

CPW Photo Warehouse was used to generate the capture event results for feral cats and quolls for the occupancy modelling and detection rate analysis. Capture events were quantified based on camera trap nights, which were measured from midday to midday of the next day. A camera trap site was considered ‘occupied’ if one (or more) detections of the target species were recorded at that site.

Detection rate (number of independent detections or ‘events’ of an animal on a camera trap divided by the amount of time the camera was operated) was used as a second metric to measure the relative abundance of feral cats and northern quolls. We considered detections as independent when separated by greater than 60 minutes. Multiple detections or events of quolls on any given night at camera sites in their preferred habitats were common. In contrast, it was rare for feral cats to be detected more than once on a camera in a single night. Camera trapping effort was
standardised due to interference by cattle or crows at some sites, with the mean detection rate representing the mean number of events per 100 camera trap nights (100 CTN) per site.

The impact of the baiting program on the feral cat population was determined by comparing the first 25 CTN from the pre- and post-bait monitoring sessions in both the treatment and reference sites to calculate detection rates and occupancy before and after baiting.

Bayesian occupancy models were run in WinBUGs 1.4, using detection histories from the treatment (baited - Yarraloola) and reference (unbaited - Red Hill) to generate a probability of occupancy at each camera trap site. Occupancy was calculated based on a basic occupancy model with the assumption of constant occupancy and detection probability during the period of camera trapping. Two forms of the model were used. To account for heterogeneity across the site a random effects component was included in one model. A random effects model, which assumes detection probability is not constant, was used to determine site occupancy at both the treatment and reference site. A spatial component was also modelled, which models the potential impact of an individual feral cat appearing on more than one camera. All models were run with a burn in of 5,000 iterations before sampling for a further 5,000 iterations (Comer et al. 2018).

2.3.2 Trapping and collaring methods

Feral cat trapping was conducted under ethics approval AEC 2018/04A and followed standard techniques (Clausen et al. 2016). Trapping was undertaken by two teams on Yarraloola from the 21 May – 1 June. No trapping was undertaken on Red Hill in 2019.

Victor ‘Soft Catch’® № 1.5 padded leg-hold traps (Woodstream Corp., Lititz, Pa.; U.S.A.) were used, with cat faeces as the attractant. Trap pan tensions were set at 2 pounds (~900 grams) as a precautionary measure to ensure northern quolls were not accidentally captured. Traps were set along similar transects used in 2018 (Figure 5 in Palmer et al. 2019), although recently burnt areas were avoided due to the lack of shelter. Additional trap sites were situated in known preferred habitat types of feral cats.

Traps were set in shaded sites along the edge of tracks, 0.5 – 1.0 km apart. Open-ended (walk through) trap sets were used consisting of two traps positioned lengthwise and vegetation used as a barrier along the sides of the trap area. In addition, some ‘cubby’ trap sets were used consisting of two traps positioned lengthwise inside a natural ‘cubby’ created in the side of a large spinifex clump. Seventy-six trap pairs were set for approximately 10 nights each.

Trapped feral cats were sedated with an intramuscular injection of 4 mg/kg Zoletil 100® (Virbac, Milperra, Australia). Feral cats were sexed, measured (head length and width), weighed, coat colour noted and DNA tissue samples taken. Each individual over 2,000 g was fitted with a GPS/VHF radio-telemetry collar with mortality signal (ATS, Minnesota, USA). Collars were programmed to take 24 GPS fixes per day between July – September and four GPS fixes per day for the
remaining months. The collars were programmed to go into mortality mode following 12 hours of inactivity.

2.3.3 Monitoring and mortality rates of feral cats fitted with radio-collars

Monitoring was conducted from the ground during each field trip and via three sessions of helicopter tracking. Located collared cats were determined to be alive or dead. GPS data was remotely downloaded from each collar if necessary. Helicopter tracking flights were undertaken in summer (19 February) and either side of the baiting program (2 July and 3 September).

GPS data obtained from the collars was converted using the ATS fixes program and Microsoft Excel to remove failed/blank GPS fixes and remove points after the collar went into mortality mode (i.e. motionless) before importing into QGIS 2.18.16. Calculations for the 95% minimum convex polygons (95% MCP) as an estimation of home range from GPS points collected for each feral cat were undertaken in R 3.6.1 (R Core Team 2019) using the adehabitatHR package (Calenge 2006). The 95% MCP were mapped on QGIS. This method creates a convex polygon around the smallest polygon that includes a specific proportion of GPS fixes for that animal. We used 95% of the GPS points, excluding the furthest 5% of data points from the sample mean (White and Garrott 1990).

To determine if feral cats were killed from eating a toxic bait, location data from the GPS collars removed from dead feral cats was merged with bait drop data in QGIS. We investigated hourly movements leading up to when the collar showed inactivity to determine the likelihood of intersection with a cluster of baits. Time to death following the bait drop was then estimated.

Plate 1. Feral cat camera trap monitoring site.
Figure 5. Feral cat camera and northern quoll trapping locations on the Yarraloola LMA baited site.
Figure 6. Feral cat camera and northern quoll trapping locations on the Red Hill reference site.
2.4 Baits and baiting

2.4.1 Eradicat® baits

The feral cat baiting program on the Yarraloola LMA was conducted under a research permit (Permit No. PER14758 Version 2) issued by the Australian Pesticides and Veterinary Medicines Authority (APVMA). It also adhered to the ‘Code of Practice on the Use and Management of 1080’ (Health Department, Western Australia) and was approved under the DBCA ‘1080 Baiting Risk Assessment and Approval’ process.

The Eradicat® feral cat baits were manufactured at the Department’s bait facility located in Harvey, WA. This bait is similar to a chipolata sausage in appearance, approximately 20 g wet weight, dried to 15 g, blanched and then frozen. It is composed of 70% kangaroo meat mince, 20% chicken fat and 10% digest and flavour enhancers (Patent No. AU781829). The toxicant sodium fluoroacetate (compound 1080) was added via injection in the manufacturing process at a rate of 4.5 mg per bait.

2.4.2 Bait cell modifications

To further minimise the risk of any aerially spread baits falling near permanent water bodies along the Robe River and other drainage lines the exclusion zones around these sites were made larger (Figure 7).

2.4.3 On ground coordination and notifications

Landholders surrounding the Yarraloola LMA were informed by email and letter of the pending baiting operation. Feral cat baiting notification posters were erected around the Pannawonica town site to alert community members and visitors to the operation. Additional 1080 warning signs were erected on the new gates along the fence either side of the rail line and replacement signs placed on access roads on Yarraloola LMA to notify the public who may be bringing in pets/dogs. The Robe River Kuruma Aboriginal Corporation was informed and provided with the notification poster so they could pass this information on to traditional owners.

2.4.4 Aerial baiting

The baiting operation was coordinated from the Mt Minnie Station airstrip located 50 km to the southwest of Yarraloola. Frozen Eradicat® baits were unloaded from the truck and placed in direct sunlight on purpose-built drying racks to thaw and then sweat. This ‘sweating’ process causes the oils and lipid-soluble digest material to exude from the surface of the bait. The baits were sprayed with the ant deterrent compound Coopex®. Excluding ants from deployed baits enhances their acceptance by feral cats.

Aerial baiting of the Yarraloola LMA took place on 8-9 July 2019. This was conducted by Shine Aviation Services, Western Australia, under the DBCA Western Shield aerial baiting contract. A Beechcraft Baron B58 twin-engine aircraft fitted with computerised GPS-linked equipment was used to deploy the baits to ensure
accurate application along previously designated flight lines covering the entire baiting cell. The baiting aircraft flew at 150-160 knots and 500-1500 feet above ground level. A series of panel lights indicated to the bombardier when to release the baits, with a GPS-linked mechanism used to prevent the application of bait outside the programmed bait cell on the Yarraloola LMA. The location of the aircraft was logged each time baits were released. Fifty baits per km² were distributed through a carousel to give an approximate 200 m long by 40 m wide bait swathe.

2.5 Northern quoll monitoring

The annual September cage trapping program was continued across the 18 sites on both Yarraloola and Red Hill to monitor northern quoll populations (Figure 5 & 6). Details of the trapping design can be found in Morris et al. (2016) and Palmer et al. (2017). Trapping generally coincided with the birth of quoll pouch young and hence allowed for the collection of this key demographic information. This timing is less suited to males, as post-mating mortality (die-off) of males begins in late July-August. As such, capture data for female and male quolls will be presented separately.

2.5.1 Trapping methods

At each trapping site, 20 small Sheffield cage traps baited with peanut butter, oats and sardines, were set in a linear transect (500 m) to trap quolls. Trap lines usually followed a landscape feature, such as a mesa edge or side, timbered riverine system or a drainage line in a gorge. Traps were placed in sheltered, shady locations and covered with a hessian bag and other vegetation, providing protection from heat and potential harassment from other animals. Rocks were placed on top of and around the sides of traps for stability and to provide additional cover.

All trapped quolls were transferred into a capture bag and then scanned for the presence of an existing passive integrated transponder (PIT) implant. Each animal was then weighed, measured, sexed, and two small tissue samples were taken from an ear for DNA analysis. For females, reproductive condition was assessed and if present, pouch young were counted and measured. Each new quoll was implanted with a unique PIT (Allflex® 12 mm FD-X transponder; Allflex Australia) to enable individuals to be identified.

Other species captured were recorded. Tissue samples were taken from Pseudantechinus sp. as there is uncertainty over the identity of this species. After processing, animals were released immediately at the site of capture. All trapping data was entered into the Yarraloola Project MS Access database.

2.5.2 Statistical analysis of quoll data

A two-way analysis of variance (ANOVA) was performed on quoll body weights of male and female quolls between treatments and years. Only 2016-2019 data was included in this analysis as fewer sites were trapped in 2015. A ‘Shapiro-Wilks’ normality test and a ‘Bartlett’s test’ for homogeneity of variance were used to ensure the data satisfied the test assumptions. The mean number of pouch young for all
years for Yarraloola and Red Hill was compared using a Welch two sample t-test. Analyses and box plots were performed in the R software (ver. 3.6.1 https://www.R-project.org/). Error bars presented on graphs are standard errors unless otherwise stated.

2.6 Predator diets

Northern quoll scats were collected from cage traps (first capture night to avoid contamination from bait consumption) and from around lures used for camera trapping as they actively mark (defecate) these places. Dingo and feral cat scats were collected during targeted searches of roadsides and cattle watering points. In addition, a quadbike was used on Yarraloola over three days in July to search minor station tracks and drill lines on Mesa G for feral cat and dingo scats. Predator scats encountered opportunistically were also collected.

Scats were analysed by G. Story of Scats About (www.scatsabout.com.au). Diet was described by the frequency of occurrence (the proportion of scats in a given sample that contained a particular prey group) and/or percentage volume of each prey group, which was estimated visually and expressed as a mean percentage volume for a given sample of scats. In general, the percentage volume method provides a measure of the relative importance of a prey type/group in the diet and the frequency of occurrence method shows how often it is eaten.

2.7 Other incidental/opportunistic records

Field teams undertook opportunistic searches to locate the threatened Pilbara olive python where possible. Opportunistic bird records were kept on each field trip by Hannah Anderson and Brooke Richards.

3 Results

3.1 Feral cat baiting

Aerial baiting took place on the 8-9 July covering an area of 142,036 ha. The aircraft dropped 70,850 baits in 1417 bait clusters (Figure 7). This equates to an average application rate over the entire bait cell of 50 baits km⁻², which is consistent with the baiting protocol. No ground baiting of the Pannawonica road corridor took place in 2019 as many parts had been extensively burnt. Thirty ground baits were laid along drill pad lines on Mesa G. These baits were monitored using camera traps and there was one confirmed take by a feral cat.

There was 5 mm of rain on the 5th July prior to the baiting operation and no subsequent rain in the months that followed (Figure 2).

3.1.1 Detection of non-target species deaths

No carcasses of non-target species were observed following the baiting on the three field trips undertaken by project staff members in early-mid July, early August or September.
Figure 7. The Yarraloola LMA bait cell (black bold line) for 2019 and the distribution of baits on the 8 and 9 July. The bait exclusion areas within the LMA are bounded by a bold black line. The outer red line is the Yarraloola LMA boundary.
3.2 Camera trap monitoring

The camera trapping data for 2019 are summarized in Table 1. No monitoring session achieved the maximum of 1500 CTN, although the lengths of time that individual cameras were inoperable were relatively short (Table 1).

The number of camera trap sites with feral cat detections on Yarraloola remained low in 2019. Northern quoll visits to camera trap sites displayed the opposite trend, particularly during the pre-bait monitoring session with animals being detected on 27 of the 60 cameras on Yarraloola (Table 1). These patterns were the reverse on Red Hill, where there were higher detections of feral cats and fewer detections of quolls in 2019.

Table 1. Summary of camera trap sessions before and after baiting in 2019.

<table>
<thead>
<tr>
<th></th>
<th>Yarraloola</th>
<th></th>
<th>Red Hill</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-bait</td>
<td>Post-bait</td>
<td>Pre-bait</td>
<td>Post-bait</td>
</tr>
<tr>
<td>Number of camera sites with feral cats</td>
<td>7</td>
<td>6</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Number of camera sites with northern quolls</td>
<td>27</td>
<td>16</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Camera trapping effort</td>
<td>Total camera trap nights</td>
<td>1474</td>
<td>1472</td>
<td>1431</td>
</tr>
</tbody>
</table>

3.2.1 Site occupancy of feral cats

A similar pattern in changes in site occupancy of feral cats between pre- and post-baiting at both treatment and non-treatment sites was observed using either the random effects model or spatial model (Figure 8). At the treatment site, a decline in occupancy post-baiting was observed in the first three years, being most profound in 2018 (t-test, p<0.00001), however an increase was observed in 2019. This increase was significant for the spatial component model (t-test, p=0.015) but not for the random effects model (t-test, p=0.063). A variable response across years was observed at the non-treatment site. The probability of feral cat occupancy for both models decreased significantly in the post-bait monitoring session on Red Hill in 2019 (t-test, p<0.00001). This was also the case for this site in 2016.
Figure 8. Modelled proportion of sites occupied (mean ± SD) by feral cats before and after baiting in treatment (Yarraloola) and reference (Red Hill) sites for 2016 to 2019 with (a) random effects and (b) spatial component.
3.2.2 Detection rates of feral cats and northern quolls

The detection rates of feral cats prior to baiting in 2019 across both sites were almost identical to those recorded following the baiting program in the previous year (Figure 9). The decline in the detection rate following baiting was relatively low at 34% (0.71 to 0.47 feral cats per 100 CTN) on Yarraloolo. However, this trend was also matched (35% decline) on Red Hill without baiting (1.59 to 1.03 feral cats per 100 CTN between the two monitoring sessions).

For 2019, detection rates of quolls were particularly high and variable on Yarraloolo prior to the baiting, as opposed to Red Hill where the rate was significantly lower. This year both populations suffered a sharp decline in detection rates in the monitoring session following the baiting (Figure 9). The overall trends in the detection rates of northern quolls were broadly similar to previous years across both study areas, whereby they were consistently higher on Yarraloolo following the initial baiting program in July 2016 (Figure 9). The magnitude of the decline in quoll detections on Red Hill in the post-bait monitoring sessions were always greater. The onset of the post-breeding die-off in male quolls provides a partial explanation for this decline each year, particularly on Red Hill. Baiting of feral cats on Yarraloolo could potentially be reducing the predation risk faced by male quolls seeking out mating opportunities and/or prolong their lifespan during the die-off phase every though they may be in poor health.

3.2.3 Feral cat and northern quoll detections at the camera trap site level from 2016 to 2019

The cat camera trap dataset compiled over the past four years is now approximating 24,000 camera trap nights (25 camera trap nights across eight sessions for all 120 sites). At the camera site level on Yarraloolo, quolls have been recorded at more sites than feral cats for seven out of the eight sessions, all of which follow the first broad-scale baiting program in July 2016 (Figure 10). In contrast, quolls were never detected at more camera sites than feral cats for any of the sessions on Red Hill.

The number of new camera sites on which quolls were detected increased every year on Yarraloolo. They have now been recorded at 63% of the camera trap sites (38 of 60). On Red Hill, the cumulative number of camera sites at which quolls were detected plateaued in 2018, with only three sites being added in the four subsequent monitoring sessions (28 camera sites; Figure 10). The cumulative number of camera sites on which feral cats were detected has continued to rise across both stations (Figure 10).

3.2.4 Opportunistic detections of dingoes on camera traps for 2019

Dingoes on were detected at comparatively few camera trap sites on Yarraloolo, with three detections before baiting and seven detections at five different cameras after baiting (T45, T53, T6 pre-baiting and T35, T49, T25, T6 and T29 post-baiting). There was a noticeable increase in the detection of dingoes on Red Hill in 2019, with seven detections across seven different cameras in the pre-bait session (C5, C54, C74, C77, C49, C48, C63), increasing to 15 detections on 12 cameras (C37, C49, C75,
C48, C61, C76, C77, C40, C47, C2, C26, C45) in the post-bait session. No foxes were recorded.

Figure 9. Mean detection rate (mean number of events per 100 camera trap nights per camera trap site) of feral cats and northern quolls on Yarraloola (a) and Red Hill (b) prior to and after the winter baiting program on Yarraloola from 2016 to 2019.
3.3 Feral cat trapping and collaring

3.3.1 Trapping and radio-collaring

A total of 697 trap nights were conducted on Yarraloola in 2019. Five feral cats (2 F, 3 M) were trapped giving a capture success rate of 0.7%. The mean mass (± SE) of females was 3485 ± 555 g and males 4267 ± 138 g (Table 2). All five feral cats were fitted with GPS/VHF radio-collars.
3.3.2 Fate of surviving feral cats collared in 2018

Nine collared feral cats were detected alive during the post-bait helicopter tracking session on 7 September 2018 on Yarraloola and three were present on Red Hill. One of the males on Yarraloola (YM04) was subsequently found in mortality mode in 2019. The cause of death was unclear as there were few remains left. The GPS data downloaded from its collar showed that it died on 9 September 2018. The remaining eight collared feral cats on Yarraloola and the three on Red Hill were all alive leading into the baiting program in July 2019 (Table 2).

3.3.3 Monitoring and mortality of collared feral cats

During the pre-bait helicopter flight on 2 July over Yarraloola, four (2 F, 2 M) of the five newly collared cats were detected, along with the eight (3 F, 5 M) collared in the previous year (Table 2). A male cat (YM12) collared in late May 2019 not located.

Following baiting, a sub-adult female (YF06, collared 2019) was found dead on 31 July via ground tracking. Her carcass and collar were retrieved. This female passed through a bait cluster two days after baiting in the early hours of the 11 July and stopped moving around midday. A further three cats were found in mortality mode from the helicopter on the 3 September. The male cat (YM10, collared 2019) passed through a bait cluster during the early morning on 16 July and died in the mid-morning, seven days after baiting. An adult female cat (YF04, collared 2018) moved through a bait cluster at night on 15 July, dying early the following morning on 16 July, seven days after baiting. The other female cat (YF03, collared 2018) was within range of a bait cluster early in the morning on 26 July and died around midday, 17 days after baiting (Table 2).

The other eight collared feral cats (2 F, 6 M) known to be present inside the bait cell just prior to baiting were all alive in September 2019. As were the three collared feral cats on Red Hill. The fate of the missing collared cat remains unknown.

In total, four out of 12 collared feral cats died from baiting (33.3% mortality rate). Only two of the eight collared feral cats that survived baiting in 2018 died following baiting in 2019 (25%), both were females. The survivors were five large males and one female. Of the four feral cats collared in 2019, the two lighter individuals died (50%; 1 F, 1 M) and the two larger animals survived (1 F, 1 M). Analysis of the movement patterns of these survivors suggests they all had multiple opportunities to encounter bait clusters.

3.3.4 Home range analysis

Sufficient data was available from 15 collared feral cats from 2018 to 2019 (5 F, 7 M, Yarraloola; 2 F, 1 M, Red Hill) to calculate the 95% MCP home range size (Table 2; Figure 11a & b). On Yarraloola, male home ranges varied in area from 986 ha (YM10 – died from baiting) to 20,897 ha (YM08) (Table 2). Female home ranges varied from 624 ha (YF06 – died from baiting) to 5351 ha (YF03– died from baiting) (Table 2). One female (YF04) was considered an outlier as she undertook numerous exploratory walks before she settled in one general area along the Drum Road on Yarraloola. Her resulting home range was enormous (22,904 ha; Figure 11a).
Mean home range size of males was 6153 ± 742 ha and females 1962 ± 1134 ha on Yarraloola (excludes YF04). Mean home range size for females on Red Hill was 395 ± 55 ha and the sole male collared has a range size of 2007 ha (Table 2, Figure 11).

a) Yarraloola

![Yarraloola Map](image)

b) Red Hill

![Red Hill Map](image)

Figure 11. Feral cat minimum convex polygons (MCP) showing 95% home range area on a) Yarraloola and b) Red Hill. Each cat was assigned a code name/number, 'M' indicates male and 'F' female.
Table 2. Capture date, demographics, home range size and status of feral cats trapped on Yarraloola and Red Hill 2018-19. Grey highlights indicate cats captured in 2019. Underlining highlights the feral cats present in the bait cell during the 2019 aerial baiting operation.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Site</th>
<th>Capture date</th>
<th>Sex</th>
<th>Mass (g)</th>
<th>Coat colour</th>
<th>Age</th>
<th>Total No of fixes</th>
<th>MCP95 (ha)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>YF01</td>
<td>Yarraloola</td>
<td>25-Apr-18</td>
<td>♂️</td>
<td>2400</td>
<td>Tabby</td>
<td>Adult</td>
<td>No data</td>
<td>-</td>
<td>Missing</td>
</tr>
<tr>
<td>YF02</td>
<td>Yarraloola</td>
<td>26-Apr-18</td>
<td>♂️</td>
<td>1700</td>
<td>Tabby</td>
<td>Juvenile</td>
<td>657</td>
<td>557</td>
<td>Died from baiting (0300 hrs 12/07/18)</td>
</tr>
<tr>
<td>YF03</td>
<td>Yarraloola</td>
<td>26-Apr-18</td>
<td>♂️</td>
<td>3390</td>
<td>Tabby</td>
<td>Adult</td>
<td>3413</td>
<td>5351</td>
<td>Died from baiting (1300 hrs on 26/07/19)</td>
</tr>
<tr>
<td>YM01</td>
<td>Yarraloola</td>
<td>27-Apr-18</td>
<td>♂️</td>
<td>3200</td>
<td>Ginger</td>
<td>Sub-adult</td>
<td>1</td>
<td>-</td>
<td>Killed by Wedge-tailed Eagle 27/04/18</td>
</tr>
<tr>
<td>YM02</td>
<td>Yarraloola</td>
<td>27-Apr-18</td>
<td>♂️</td>
<td>4170</td>
<td>Tabby</td>
<td>Adult</td>
<td>2636</td>
<td>2860</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM03</td>
<td>Yarraloola</td>
<td>27-Apr-18</td>
<td>♂️</td>
<td>4200</td>
<td>Tabby</td>
<td>Adult</td>
<td>2429</td>
<td>3361</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM04</td>
<td>Yarraloola</td>
<td>28-Apr-18</td>
<td>♂️</td>
<td>5000</td>
<td>Tabby</td>
<td>Adult</td>
<td>2063</td>
<td>3329</td>
<td>Died on 9/09/18, cause unknown</td>
</tr>
<tr>
<td>YF04</td>
<td>Yarraloola</td>
<td>28-Apr-18</td>
<td>♂️</td>
<td>3120</td>
<td>Tabby</td>
<td>Adult</td>
<td>3489</td>
<td>22904</td>
<td>Died from baiting (0800 hrs 16/07/19)</td>
</tr>
<tr>
<td>YF05</td>
<td>Yarraloola</td>
<td>30-Apr-18</td>
<td>♂️</td>
<td>2630</td>
<td>Tortoiseshell</td>
<td>Adult</td>
<td>2514</td>
<td>750</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YF06</td>
<td>Yarraloola</td>
<td>23-May-19</td>
<td>♂️</td>
<td>2930</td>
<td>Tabby</td>
<td>Adult</td>
<td>406</td>
<td>624</td>
<td>Died from baiting (1300 hrs, 11/07/19)</td>
</tr>
<tr>
<td>YF07</td>
<td>Yarraloola</td>
<td>28-May-19</td>
<td>♂️</td>
<td>4040</td>
<td>Tabby</td>
<td>Adult</td>
<td>1671</td>
<td>1125</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM05</td>
<td>Yarraloola</td>
<td>01-May-18</td>
<td>♂️</td>
<td>2050</td>
<td>Tabby</td>
<td>Juvenile</td>
<td>289</td>
<td>10449</td>
<td>Died before baiting (1300 hrs 28/06/18)</td>
</tr>
<tr>
<td>YM06</td>
<td>Yarraloola</td>
<td>01-May-18</td>
<td>♂️</td>
<td>4630</td>
<td>Black</td>
<td>Adult</td>
<td>2540</td>
<td>4203</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM07</td>
<td>Yarraloola</td>
<td>01-May-18</td>
<td>♂️</td>
<td>5620</td>
<td>Tabby</td>
<td>Adult</td>
<td>2313</td>
<td>5658</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM08</td>
<td>Yarraloola</td>
<td>02-May-18</td>
<td>♂️</td>
<td>3080</td>
<td>Tabby</td>
<td>Sub-adult</td>
<td>2298</td>
<td>20897</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM09</td>
<td>Yarraloola</td>
<td>04-May-18</td>
<td>♂️</td>
<td>4400</td>
<td>Tabby</td>
<td>Adult</td>
<td>1013</td>
<td>2000</td>
<td>Died from baiting (0800 hrs 28/07/18)</td>
</tr>
<tr>
<td>YM10</td>
<td>Yarraloola</td>
<td>25-May-19</td>
<td>♂️</td>
<td>4075</td>
<td>Tabby</td>
<td>Adult</td>
<td>515</td>
<td>986</td>
<td>Died from baiting (1000 hrs, 16/07/19)</td>
</tr>
<tr>
<td>YM11</td>
<td>Yarraloola</td>
<td>28-May-19</td>
<td>♂️</td>
<td>4535</td>
<td>Black</td>
<td>Adult</td>
<td>1675</td>
<td>5105</td>
<td>Alive on 3/09/19</td>
</tr>
<tr>
<td>YM12</td>
<td>Yarraloola</td>
<td>29-May-19</td>
<td>♂️</td>
<td>4190</td>
<td>Black</td>
<td>Adult</td>
<td>No data</td>
<td>-</td>
<td>Missing since collaring</td>
</tr>
<tr>
<td>RM01</td>
<td>Red Hill</td>
<td>13-May-18</td>
<td>♂️</td>
<td>5100</td>
<td>Tabby</td>
<td>Adult</td>
<td>1880</td>
<td>2007</td>
<td>Alive on 10/09/19</td>
</tr>
<tr>
<td>RF01</td>
<td>Red Hill</td>
<td>14-May-18</td>
<td>♂️</td>
<td>3000</td>
<td>Tabby</td>
<td>Adult</td>
<td>2834</td>
<td>340</td>
<td>Alive on 10/09/19</td>
</tr>
<tr>
<td>RF02</td>
<td>Red Hill</td>
<td>16-May-18</td>
<td>♂️</td>
<td>2900</td>
<td>Tabby</td>
<td>Adult</td>
<td>4679</td>
<td>451</td>
<td>Alive on 4/09/19</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
3.4 Northern quoll monitoring (trapping)

3.4.1 Quoll trapping, number of individuals captured and survivorship

Trapping effort for the annual September northern quoll monitoring program was consistent with the previous three years for Red Hill (1440 trap nights at 18 sites). For Yarraloola, the trapping effort was 1360 trap nights at 17 sites. Trap site R was abandoned after the setting of eight traps on the first night. There was not enough cover present for trapping as the area had been severely burnt. It is notable however, two quolls were captured in these eight traps (data not included in abundance estimates; Appendix 2).

There was an overall decrease in the total number of individual northern quolls captured on Yarraloola and Red Hill, with fewer captured on Red Hill compared to Yarraloola (36 quolls compared to 59 quolls; Appendix 2). Slightly more males were caught than females on both Yarraloola (31 M, 27 F) and Red Hill (21 M, 15 F).

Capture data for individual sites and other capture rate metrics can be found in Appendix 2.

The survival rate of tagged females from September 2018 to this year’s trapping session was 29% for Yarraloola (11 of 38; adjusted for Site R not being trapped) and 15% for Red Hill (5 of 33; Figure 12a). The proportion of unmarked female northern quolls captured across the stations each year from 2017 (Year 2) to 2019 (year 4) were relatively consistent, ranging from 67% to 75% in most cases. There was a slight deviation from this trend during the last year on Yarraloola, where marked females comprised 40% of trapped animals. Further detailed analysis of the survival rates of female quolls is required but this suggests that cat control may promote increased survival of adult females. Interestingly, one of the females (PIT 918017) recaptured at Site K on the edge of Mesa G along the Robe River was first captured in 2016, which means she was probably born in 2015. This female was at least four years old. None of the 89 marked males across both sites from the previous year were recaptured in 2019 (Figure 12b).

Long distance movements of several males were evident. One male on Yarraloola moved ~1 km each night for four nights as it travelled back and forth from Line M to N twice. Another male on Red Hill was caught at three different trap lines. It moved 9.13 km over five nights, starting at Line L, moving to PP and it was finally caught at Line J (Appendix 2).

3.4.2 Capture rates of northern quolls

To enable the comparison of quoll captures between all trapping sessions, data was converted to the mean number of individuals captured per trap line (Figure 13). Capture rates of both males and females declined on Yarraloola from their previous peaks in 2018. The magnitude of the decline for females was not as great as that experienced on Red Hill, where capture rate fell by 55%. The capture rate of males on Red Hill remained lower than Yarraloola but unchanged from the previous two years. Male capture rates at the trap site level were highly variable across both areas.
ranging from none to seven individuals. Although no males were caught at over half the trapping sites on Red Hill (Figure 13; Appendix 2).

a) Female quolls

![Chart showing the number of female quolls captured at Yarraloola and Red Hill from 2016 to 2019. The chart includes data for Year 1 (2016), Year 2 (2017), Year 3 (2018), and Year 4 (2019) for both Yarraloola and Red Hill. The chart also shows the number of recaptures and new captures by year.]

b) Male quolls

![Chart showing the number of male quolls captured at Yarraloola and Red Hill from 2016 to 2019. The chart includes data for Year 1 (2016), Year 2 (2017), Year 3 (2018), and Year 4 (2019) for both Yarraloola and Red Hill. The chart shows the number of new captures by year.]

Figure 12. Total number and capture history of individual female (a) and male (b) northern quolls captured per 18 trap sites (1440 trap nights) on Yarraloola (baited) and Red Hill (reference) from 2016 to 2019. * For 2019, Site R on Yarraloola was not trapped (17 trap sites and 1360 trap nights).
Figure 13. Mean (+ SE) number of individual female (a) and male (b) northern quolls captured per trap site (20 traps set for 4 consecutive nights) at Yarraloola and Red Hill from 2015 to 2019. For 2016-19 there were 18 sites trapped at each site in September, apart from Yarraloola 2019 when there were 17 sites trapped. For 2015, trapping was spread from August to October (Yarraloola 11 trap sites, Red Hill 10 trap sites). * Males for 2015 were excluded as some sites were trapped in early August before the male die-off.

3.4.3 Northern quoll body mass and litter size

The mean body mass of captured females and males across the sites remained largely unchanged from 2018 (Figure 14). The two-way ANOVA revealed no significant effect for site or a site by year interaction but there was a significant year effect ($F_{3,222} = 8.99$, $p = 0.000$) on female body mass. Females were heaviest in 2017 when there was above average rainfall and lighter in years of average or below average rainfall (2016, 2018, 2019). The mean body mass for males was relatively low for 2019 (dry conditions). For males, there was no significant site effect alone but a significant year effect ($F_{3,187} = 25.12$, $p = 0.000$) and site by year interaction ($F_{3,187} = 4.47$, $p = 0.005$) effect. Like females, the males were also heaviest in 2017 when it was wetter. The site by year interaction resulted from the significant difference between the body masses of quolls captured in 2016. The onset of male die-off was potentially earlier that year and there were relatively few males captured at either site. Only twelve males were captured on Red Hill, most of which were in a particularly poor state. In contrast, several the ten males captured on Yarraloola were surprisingly healthy.

Births were delayed this year as only one female from each site was recorded to have pouch young ($n = 28$ Yarraloola; $n = 15$ Red Hill). Both females had eight pouch young, no larger than 8 mm. In previous years, the average litter size on Yarraloola was highest in 2018 with 7.4 ± 0.3 pouch young (PY) per litter (range 6–8, $n = 8$), similar to 2017 (7.2 ± 0.2 PY, range 3–8, $n = 32$) and 2015 ($7.2 + 0.3$ PY,
range 5–8, n = 10), but greater than 2016 (6.8 ± 0.4 PY, range 2–8, n = 16). Mean litter sizes were consistently lower on Red Hill, 2017 (6.4 ± 0.3 PY, range 3–8, n = 22), 2016 (6.6 ± 0.4 PY, range 3–8, n = 11) and 2015 (5.3 ± 0.6 PY, range 3–8, n = 8). No pouch young were recorded on Red Hill in 2018 but trapping started a week earlier due to logistical reasons. Overall, the number of pouch young was significantly lower on Red Hill than Yarraloola for all years combined (t_{80} = 3.20, P = 0.001).

Figure 14. Body mass (g) of female and male northern quolls captured at monitoring sites from 2016 to 2019 at Yarraloola and Red Hill. Band inside the box represents the median value, box boundaries the 25th and 75th percentiles, whiskers the 10th and 90th percentiles and filled circles represent outliers.

3.4.4 Non-target captures in quoll traps

Capture rates of non-target species were low in 2019. Common rock-rats (*Zyzomys argurus*) were the most frequently encountered species, with 58 captures at Yarraloola and 77 captures at Red Hill. The mean number of common rock-rats captured per trap line across both sites collapsed following the peak reached in September 2018 (Figure 15).

The other species of by-catch included four *Pseudantechinus* sp., two *Dasykaluta rosamondae*, a sub-adult Rothschild’s rock wallaby (*Petrogale rothschildi*), several skinks (*Egernia* sp. and *Ctenotus* sp.) and a juvenile goanna (*Varanus* sp.).
3.5 Predator diets

3.5.1 Overall comparison of dingoes, feral cats and northern quolls

In total, 322 northern quoll, 50 feral cat and 135 dingo scats were collected during 2019. These results were combined with previous data and the relative volume of food groups is shown in Figure 16.

The diets of the three predators show strong separation according to their body mass. Dingoes ate mostly kangaroos, which were largely euros and a smaller proportion of red kangaroos. Cattle were the other important source of food. Minor prey items were echidnas, emus and grasshoppers (Figure 16).

Common rock-rats comprised almost 44% of the diet of feral cats by volume. Other prey were mostly small vertebrates including other rodent species, dasyurids and birds. Northern quolls had the most varied diet, consuming mostly arthropods and to a lesser degree fruits, rodents and other small vertebrates.

Evidence for dingoes preying on subordinate predators was relatively weak across the entire collection of 395 scats from across the four-year study. Only seven scats contained feral cat remains (1.8% frequency of occurrence; FOO) and three quoll remains (0.8% FOO). Four of the feral cat detections were from Yarraloola in 2019 (6.2% FOO; n=65 scats). In contrast, 17 of the 135 feral cat scats collected across the entire study contained quoll remains (12.6% FOO), indicating feral cats were a more important predator of quolls. One of the feral cat scats collected at Quoll trap Line M on Red Hill in September 2019 contained a northern quoll PIT tag. There were several accounts of cannibalism in both dingoes and northern quolls.
Figure 16. Relative volume of food groups in the diets of dingoes, feral cats and northern quolls for 2015 to 2019. Parentheses show sample sizes.

3.5.2 Feral cat diet

The use of a quad bike on Yarraloola aided the collection of feral cat scats, with 47 found compared with only three for Red Hill (no quad bike surveys). Many of the feral cat scats were from the drill pad lines on Mesa G. The common rock-rat remained the most important prey on Yarraloola in 2019 (Figure 17). The frequency at which quolls were detected increased to 21.3% FOO and the relative volume of this species was 14.8%. Most of the scats containing quoll remains (8 of 11) were collected from Mesa G. There was a previous event of high occurrence of quolls in feral cat scats in 2017, where five of eight cat scats found in two neighbouring gorges at Quoll trapline N and M on Yarraloola contained quoll remains (Palmer and Anderson 2018). Birds were also a common prey (53.2% FOO) of feral cats in 2019 but they contributed less in terms of relative dietary volume (Figure 17). Two feral cat scats from Mesa G also contained Rothchild’s rock wallaby, which was the first record of this prey for the study.
Figure 17. Comparative diet of feral cats on Yarraloola from 2016 to 2019. Diets are shown in terms of relative volume of each food group in the scats. Parentheses show sample sizes.

3.5.3 Northern quoll diets

Northern quolls on Yarraloola appear to have changed their dietary niche since feral cat control commenced (Figure 18). Prior to broad-scale baiting and during the first year of the baiting program, fruits featured as the second most eaten food group. The prevalence of fruit in their diet subsequently declined as quolls increased their intake of rodents in 2017 and 2018. Under the dry conditions in 2019, the frequency of rodents in the diet of quolls across the two stations declined, but it remained higher for quolls on Yarraloola (17.3% FOO) compared to Red Hill (6.2% FOO). The frequency of fruits eaten by quolls on Red Hill was higher in 2018-19, whereas quolls on Yarraloola preyed more heavily on invertebrates in these years.

The orange fur of a microbat, probably the threatened Pilbara leaf-nosed bat (*Rhinonicteris aurantia*) was recovered from a quoll scat collected in the Cane River gorge on Red Hill.
Figure 18. Comparative diets of northern quolls for (a) Red Hill and (b) Yarraloola (2015-2019). Diets are shown in terms of frequency of occurrence of each food group in the scats. Parentheses show sample sizes.
3.5.4 Dingoes

From 2016 to 2018, dingoes on Yarraloola largely preyed on kangaroos (euros and red kangaroos), with relatively little change between years in their dietary composition (Figure 19). Likewise, dingo diets on Red Hill from 2017 to 2018 were reasonably consistent between these years. Compared with Yarraloola, kangaroos were eaten in lesser quantities, and cattle and grasshoppers (2017) were consumed in greater volumes.

There was a major shift in dingo diets on Yarraloola in 2019, with cattle becoming the main food source and kangaroos the second most important prey. There was an increase in the amount of cattle eaten on Red Hill in 2019 but kangaroos remained the primary prey.

Figure 19. Relative volume of food groups in the diets of dingoes for Yarraloola (2016-2019) and Red Hill (2017-2019). Parentheses show sample sizes. Reptiles and Fruits/Grasses were excluded as these groups were rarely eaten.

3.6 Other incidental/opportunistic records

Two Pilbara olive pythons (*Liasis olivaceus barroni*) were found in 2019, both on Red Hill. The first was detected in early August under a cattle watering trough commonly used by the pythons, situated near Cardo Camp. The second was seen during September at Cardo camp itself (Appendix 3).

No common brush-tail possums (*Trichosurus vulpecula*) were recorded Cat Camera 49 this year. One was recorded in new location on Mesa C, appearing on two quoll camera traps set for the first time (Appendix 3).
4 Discussion

4.1 Winter baiting program

As no rain fell following the baiting program on the 8-9 July 2019, there were no issues related to baits getting wet, which can impact on bait toxicity or palatability (Algar et al. 2013). In total, 70,850 Eradicat® feral cat baits were delivered by air over the 142,036 ha bait cell at the rate of 49.9 baits km$^{-2}$, which is consistent with the baiting protocol. No carcasses of non-target species were observed after the baiting program.

The timing of the deaths of the four collared feral cats indicate baits were taken on day two, seven (two cats) and seventeen following the baiting. These results are consistent with the 2018 Yarraloola baiting program (Palmer et al. 2019) and those from Fortescue Marsh (Comer et al. 2018), indicating surface laid baits in the Pilbara remain available and palatable to feral cats for at least three weeks.

4.2 Effectiveness of Eradicat® baiting

4.2.1 Feral cat numbers leading into the 2019 baiting program

The relative abundance of feral cats prior to the baiting program remained similar to that recorded after the winter baiting program in the previous year on Yarraloola. Hence, there was little evidence of a recovery in this population over the summer due to natal recruitment and/or immigration of animals from outside the baited cell. There was evidence that breeding did occur in spring 2018 with some obvious younger cats detected on camera traps across both stations in June 2019. The lack of any substantial recovery in the feral cat population within the bait cell up to 11 months following the previous baiting program contrasts with other similar broad-scale cat baiting projects at Fortescue Marsh in the eastern Pilbara and Matuwa Indigenous Protected Area (IPA) in the southern rangelands (Algar et al. 2013; Comer et al. 2018; Lohr and Algar 2020). This finding is discussed further below.

4.2.2 Baiting efficacy

Two independent approaches, camera trap monitoring and the tracking of mortality rates of radio-collared feral cats exposed to baits, were used to monitor baiting efficacy in 2019. Two measures of the relative abundance of feral cats were generated from the camera trapping data (site occupancy and detection rate) immediately prior to and immediately following the baiting program. Previously, there was general agreement between these two metrics, albeit the mortality rate of collared feral cats exposed to baits was lower in 2018 (Palmer et al. 2019). For 2019, the probability of site occupancy of feral cats according to both models (random and spatial effects) in the baited cell increased after the baiting program but fell by a significant magnitude in the reference site over the same period. In contrast, the detection rate of feral cats declined following baiting on Yarraloola (34%), but it also fell on Red Hill (35%) where there was no baiting.
There was no mortality amongst the three collared feral cats present on Red Hill. Whereas, four of the twelve (33%) collared feral cats present within the bait cell died within 17 days of the bait drop. Hence, the mortality rate of feral cats was reflected in the decline in detections on Yarralooloo following baiting, but site occupancy increased. The reason for this inconsistency is not clear. It is possible that the low number of feral cat detections pre- and post-baiting meant that the power to detect a change in occupancy was compromised. Repeat feral cat detections at individual camera sites was also low on Yarralooloo, with only one camera site occupied by cats during both monitoring sessions. Site fidelity was stronger on Red Hill with most (6 of 7) of the camera sites with feral cats in the post-bait session also recording them during the pre-bait session.

The reasons to why feral cat occupancy/detection rates fell sharply between the monitoring sessions on Red Hill in both 2016 and 2019 in the absence of any control action is unknown. This highlights the importance of long-term monitoring to better understand natural variation in abundance over time. Factors that influence the mobility and activity levels of feral cats have the potential to impact site occupancy rates. For instance, the increasing day length after the winter solstice usually triggers the onset of breeding in female cats. Activity levels and movement may therefore decline after baiting as females give birth to kittens. Decreased movements due to the maternal care of kittens may have been responsible for the pattern observed in August 2016 (Palmer et al. 2017). Although it does not explain the decline in 2019 as most females probably did not breed due to the dry conditions.

The development of more advanced analytical techniques for camera-trap data suggests that it is now feasible to derive robust population density estimates for cryptic and wide-ranging species based on individual identification (Forsyth et al. 2019; Rees et al. 2019). Camera traps can be placed in grid formation in a landscape to systematically sample areas of interest, then the resulting history of detections can be used to estimate the abundance of a species using a spatially explicit capture-recapture (SECR) framework. These models consider both the distribution and movement of individuals across the landscape in relation to the placement of detection devices, and account for imperfect detection (Royle et al. 2013).

A Masters student from the University of Western Australia is currently exploring the potential to use the SECR framework for deriving feral cat densities in future camera trapping programs in the Pilbara. This project will make use of current camera trapping data to investigate the likelihood of individually identifying feral cats from unique coat markings. A shift to this approach may avoid some of the issues surrounding the use of the current camera trap abundance metrics. Other changes may include using white-flash camera traps to improve the quality of images of feral cats and manipulating lures (olfactory, visual, audio, food cues) to maintain curiosity levels of individual feral cats so that they continue visiting camera trap sites.

While some of the apparent anomalies in the camera monitoring over the past four years are not easily explained, the trends in feral cat abundances between the baited and unbaited sites were clear. Following the first large-scale bait drop in 2016, feral
cat abundance (detection rates in Figure 9) and camera sites with cat detections (Figure 10) were all lower on Yarraloola compared with Red Hill apart from June 2018 (pre-bait) when there was a re-invasion of the bait cell. The winter baiting greatly reduced (2016 and 2018) or lowered (2017 and 2019) feral cat abundance on Yarraloola to very low detection rates. In three of the four years, the detection rate of feral cats on Yarraloola following baiting was below 0.5 cats per 100 CTN, which is the equivalent of one cat detected in 250 camera trap nights. Such levels are very low compared to other camera trapping studies from arid and northern regions of Australia (Brook et al. 2012; Hernandez-Santin et al. 2016; Read et al. 2015; Stokeld et al. 2016). The only period where the post-bait level was greater (0.73 cats per 100 CTN) was in 2018. In that year, there was a feral cat re-invasion of Yarraloola between September 2017 and May 2018. The detection rate of feral cats prior to baiting in June 2018 peaked at 1.7 cats per 100 CTN.

The recent addition of camera trap monitoring to the 16-year long feral cat control program on the Matuwa IPA suggested that aerial baiting alone no longer suppressed the feral cat population to the levels currently achieved in this ‘early stage’ Yarraloola study. A decline in efficacy of baiting had resulted from the long-term control approach selectively altering the demographics of the feral cat population towards one dominated by older and larger sized males that avoid taking baits. An intensive large-scale leg-hold trapping program was implemented with 159 feral cats trapped from September 2018 to May 2019. This removal process essentially had the effect of re-setting the feral cat population to one that was now largely bait naïve. The subsequent aerial baiting program in winter 2019 reduced the detection rate of feral cats to levels well below that achieved at Yarraloola (Lohr and Algar 2020).

Although annual aerial baiting remains effective at Yarraloola, there is evidence that individual adult male cats (radio-collared males YM02-03 and YM06-08; Table 2) have survived multiple winter baiting programs. Other uncollared large males were also identified from camera trap images from inside the bait cell recorded over multiple years. The resulting male bias in the adult feral cat population will eventually reduce the efficacy of baiting (Lohr and Algar 2020). An integrated feral cat management approach is recommended for arid zone systems with the implementation of intensive trapping programs at least every 10 years.

A key factor in the efficacy of the baiting program in 2019 was the dry conditions. It is well documented that baiting is more effective when prey supplies are low during dry times (Algar and Burrows 2004; Algar et al. 2013). In this study, when common rock-rat numbers were at their highest in 2018, only two of the eleven feral cats with collars exposed to baiting died (18.2% mortality cf. 33.3% mortality in 2019 under dry conditions). However, while none of the five large radio-collared males exposed to baiting in 2018 when prey supplies were plentiful took baits, they also survived following the baiting in 2019. Although, two (YF03-04) of the three surviving females from 2018 were killed during the baiting program in 2019 under changed conditions. The surviving adult males may have learnt to avoid baits from their previous encounters, or they had become proficient hunters of preferred live-prey and were not interested in eating baits (Algar et al. 2007).
Another factor to note is that survival rates of adult feral cats in the study area were high. Of the 17 collared adults that remained in the study sites, only one large male (YM04, 5.0 kg) died from unknown causes (Table 2). This death occurred two months following the baiting in 2019, which suggests it was unlikely to have taken a bait. The other five deaths of collared adult feral cats were attributed to baiting. The remaining eleven collared adults were still alive in September 2019. Only two of the juvenile cats captured were large enough to collar. Both died in 2018, one from baiting and the other from natural causes.

Limiting re-invasion of cat-managed areas surrounded by open-system populations of feral cats remains an ongoing challenge for landscape scale control programs (Comer et al. 2018). The Fortescue Marsh site was re-invaded each year from 2013 to 2016. Furthermore, in relation to the long-term Matuwa IPA cat control program, Lohr and Algar (2020) indicate that reinvasion following feral cat control is inevitable. Yet our monitoring has only identified a single reinvasion event of Yarraloola in the three years that followed the initial baiting program in 2016. Breeding and recruitment patterns of cats in the Pilbara are unknown, making it difficult to speculate why there was no recovery in the cat population on Yarraloola in 2017 and 2019. Cat reinvasion is believed to occur in the summer and autumn periods preceding baiting, driven by both natal recruitment and immigration of younger animals from outside the baited area (Algar et al. 2013). The recovery of the feral cat population on Yarraloola in 2018 was probably triggered by high recruitment following the increases in prey populations driven by the tropical low that delivered widespread summer rainfall in February 2017 (Palmer et al. 2019). Populations of invertebrates and nomadic birds were high in 2017, followed by common rock-rats in 2018.

The more topographically rich landscapes of the west Pilbara may be more restrictive on feral cat movement compared with these other studies (Fortescue Marsh and Matuwa IPA) done in largely flat landscapes (Hohnen et al. 2016). Topographic barriers surrounding the Yarraloola LMA, such as the rugged Hamersley range that line the eastern margin of the bait cell and other mesa formations that mark parts of the northern and southern boundaries may form natural obstacles, slowing feral cat re-invasion rates (Recio et al. 2015).

4.3 Response by northern quolls to feral cat control

4.3.1 Population response by northern quolls to feral cat control

The overall capture rate of northern quolls during the September 2019 trapping session declined for the first time since large-scale baiting commenced in 2016. These declines were ~30% lower from the peaks reached in the previous year across both sites. Quoll capture rates remained higher on Yarraloola, with 4.26 individuals captured per 100 trap nights (TN) down from 6.04 individuals 100 TN⁻¹ in 2018. The tally for Red Hill was ~40% lower than Yarraloola at 2.50 individuals 100 TN⁻¹ (cf. 3.75 individuals 100 TN⁻¹ in 2018).

Captures of females remained higher within the feral cat baited treatment compared with the reference site. They also suffered a lower rate of decline (28%) from the
previous year, with the female capture rate falling by 55% from September 2018 to 2019 on Red Hill. The number of individual males captured on Yarraloola declined by 16% but remained higher than on Red Hill where there was no change from the 2017-18 capture rates.

Summer rainfall patterns are a key driver of population fluctuations in northern quolls as this short-lived species is highly dependent on annual juvenile recruitment (Moro et al. 2019). For this four-year study there was only one year of high summer rainfall, which was in 2017. Hence, there was a strong population increase detected from 2016 to 2017, particularly on Yarraloola where quoll captures doubled (Figure 12 & 13). Quoll body masses were also heavier in this wetter year. There were good late autumn and early winter falls of rain in 2016 and 2018 but this was well after the period critical for newly weaned quolls in early summer.

Rainfall for 2019 was well below average and the wet season was poor, particularly on Red Hill. Poor juvenile recruitment across both sites was likely to be a factor in the general decline in northern quoll populations. Disentangling the influences of feral cat control and differing rainfall patterns on quoll populations across the study areas is not straightforward. For instance, the dry conditions experienced in 2019 lead to a considerable delay in the birth of young, with only 2 of the 43 females examined having pouch young. In fact, some of the small females were yet to mate. This delay may have also caused a lag in male die-off in 2019, which could explain why the capture rates of males remained seemingly high despite the dry conditions. However, even with the well below average rainfall in 2019, quoll numbers were still higher on Yarraloola compared to Red Hill, indicating that they did benefit from feral cat control.

Recaptures of marked quolls (PIT tags) also indicate that survival rates of adult females were higher with feral cat control for two of the three annual periods between trapping sessions. The annual survival rate of females on Yarraloola was higher for 2016-17 (50% cf. RH 35%) and 2018-19 (29% cf. RH 15%). For 2017-18 it was 30% for both sites (Figure 12). Additionally, we captured the oldest known wild female quoll at Site K on the Robe River on Yarraloola in 2019. This female was captured 12 times from September 2016 to 2019 (maximum opportunity to be trapped was 16 times). She was most likely four years of age when last captured. Given how ‘trap happy’ this female was and the fact that Site K was trapped on a number of occasions in 2015, we believe she was born in September 2015. Three-years is the previous maximum reported survivorship for a female (Moro et al. 2019). Also, of note is that Site K was burnt in January 2017 (Figure 4). As per previous years, none of the marked males from former trapping sessions were captured again.

Wildfire is another factor that potentially dampened the response by northern quolls to feral cat baiting in 2019. Fire mapping for 2019 is yet to be completed but it is estimated that ~32% of northern quoll habitat was burnt on Yarraloola by hot summer fires between the 2018 and 2019 quoll trapping sessions. Up to six quoll trapping sites on Yarraloola were impacted by fire. Trapping at Site R was abandoned due to the lack of cover. In contrast, there were few summer wildfires on
Red Hill that impacted on quoll habitat and only one site was burnt. Further analysis/research is required on the effects of fire on quoll populations as it is widely reported that feral cats respond to fire scars in northern Australia, where they can take a heavy toll on fauna populations in burnt sites that lack adequate cover to protect them from predation (Leahy et al. 2016). Interestingly, Site P on the southern side of the Pannawonica road was severely burnt in late December 2018, but then four female and four male quolls were captured there in September 2019. Likewise, only eight traps were set at Site R for a single night and two quolls were captured. Clearly this species is well adapted to fire.

4.3.2 Northern quoll abundance before and after Eradicat® baiting

Laboratory testing showed northern quolls have a moderate tolerance to compound 1080 (LD50 7.5 mg/kg; King et al. 1989). Previously, it was speculated that their relatively small body mass in the Pilbara (360-600 g) may place northern quolls at risk if they ingested a single toxic feral cat bait containing 4.5 mg of 1080. Yet King (1989) and this project (Cowan et al. in press) show that aerial baiting programs targeting wild dogs or feral cats do not pose a hazard to co-occurring free ranging northern quolls in the Pilbara. These studies confirm that the estimated bait toxicity derived from laboratory settings applying 1080 in a liquid dosage form and actual poisoning of quolls under field conditions when the 1080 is presented in a meat bait are not comparable (Jones et al. 2014).

Here, we extend this evidence by presenting data on the relative abundance of northern quolls immediately prior to and immediately following four winter Eradicat® baiting programs (Figure 9). If northern quolls were susceptible to 1080 poisoning from meat baits, we would expect to detect a collapse in quoll numbers following each baiting program. Quoll detection rates only declined by a significant level following the baiting on one occasion on Yarraloola, which was in 2019. In contrast, quoll detection rates declined significantly in the post-bait monitoring session in all years on Red Hill in the absence of baiting.

It was not possible to sex the northern quolls visiting these camera traps, although many appeared larger. Given the cameras were also set in the lead-up to and during the quoll breeding season and there was an olfactory lure present, we suspect most individuals detected were males. The sharp decline in quoll detections in the post-bait session each year on Red Hill is likely to be due to a combination of decreased mating activity in the second half of August and the onset of male die-off. Higher feral cat densities on Red Hill may also mean a greater proportion of these weakened male quolls were taken by cats. In 2019, the dry conditions delayed the onset of breeding and the subsequent male die-off process. However, there were significant declines in the detection rates of northern quolls on both Yarraloola and Red Hill during the post-bait monitoring session. Both quoll populations were likely to have been heavily impacted by feral cat predation in this period as ~20% of cat scats collected at this time contained quoll remains.
4.4 Predator interactions and potential indirect benefits to quolls from feral cat control

Top down processes exerted by higher order predators, such as feral cats, can strongly influence the abundance, spatial distribution and behaviour of smaller terrestrial predators like northern quolls through both competition and intraguild predation (Molsher et al. 2017). Radio-telemetry demonstrated that northern quolls suffered high levels of mortality due to intraguild predation by feral cats and to a lesser degree, canid predators (either dingoes or foxes) in 2015 (Morris et al. 2015, Cowan et al. in press). Effective control of feral cats should therefore enhance the fitness of the northern quoll population on Yarraloola.

The monitoring of northern quoll diets from 2015 to 2019 across both sites has demonstrated a dietary shift by quolls on Yarraloola away from fruits to rodent prey (Figure 18). In contrast, quoll diets were stable across years on Red Hill regardless of the differing rainfall patterns and changes in common rock-rat numbers. Dunlop et al. (2017) hypothesised that small vertebrates were the high-value and preferred prey of northern quolls, but diet-switching to fruits common in rocky habitat, was a sign that feral cats were excluding quolls from the spinifex grasslands where availability of small vertebrate prey was higher. The above evidence provides strong support that baiting of feral cats on Yarraloola benefits quoll populations indirectly by improving their access to richer prey sources in high-risk open habitats. The occurrence of rodent prey in the diet of quolls at both sites did fall under the dry conditions in 2019, coinciding with the collapse in the capture rates of common rock-rats. Capture rates of this key prey species were at their lowest across both sites in 2019.

According to Hernandez-Santin et al. (2016) introduced predators influence the use of landscapes by northern quolls at both local and larger scales in the northern Pilbara, with quolls avoiding the flat and open habitats more frequently used by feral cats. They suggest that predator avoidance was a key reason for the contraction of the distribution of northern quolls to rocky areas across northern Australia. Over the past four years in this study, feral cats and quolls have occasionally been detected at the same camera sites on both study areas in a range of different habitat types. The most compelling images captured that demonstrate the risk to northern quolls moving through lowland habitats was that of a northern quoll being followed by a feral cat at 11 pm on the 7 July 2019 at Camera Site 57 on Red Hill.

We are yet to investigate how landscape/habitat differences across camera trap sites influences levels of spatial overlap/segregation between feral cats and quolls. On Yarraloola where feral cat baiting has reduced their numbers, northern quolls should be less likely to encounter feral cats compared with those in the unbaited reference site of Red Hill. Visits by quolls to camera traps located in lowland sites on Yarraloola has increased every year since baiting commenced (Figure 10). Northern quolls are now known to have visited 38 of the 60 cat cameras on Yarraloola, although not all of these camera sites were in lowland habitats. In contrast, northern quolls have been detected at 28 camera sites on Red Hill, with few new sites added since 2017. Furthermore, after the initial baiting program, northern quolls have been
detected at more camera sites than feral cats during all seven monitoring sessions, whilst this has never occurred on Red Hill.

4.4.1 Intraguild predation

Evidence of intraguild predation based on the analysis of predator scat collections was mixed. Dingoes rarely ate northern quolls (<1% frequency in diet) and feral cats were infrequent prey (7 in 395 scats). An increase in consumption of feral cats by dingoes (6.2% FOO) was detected under the drier conditions for Yarraloola in 2019 but not on Red Hill. Increased levels of intraguild predation were expected under the harsher conditions but it is unclear why no feral cat remains were found in the 71 dingo scats examined from Red Hill. Whether this increase related to dingoes scavenging the carcasses of poisoned feral cats or if they were using the large fire scars as hunting grounds on Yarraloola. Pilbara olive pythons were also confirmed to prey on northern quolls, with two of eight scats examined containing quolls and a further two Rothchild’s rock wallaby.

Feral cats were the predominate predator of northern quolls in this region, but predation was patchy between years. In 2017, we detected a localised predation event whereby an individual feral cat/s were targeting quolls in two neighbouring gorges connected by drainage lines to the south of Mesa J (Quoll Traplines M and N). Five of eight feral cat scats collected in this area in September/October contained the remains of quolls. Only one other feral cat scat collected from 2016 and 2018 (n=68) contained northern quoll remains. Northern quolls then became a significant prey item for feral cats under the dry conditions in 2019. One of the feral cat scats from Red Hill even contained the PIT of a previously trapped quoll, which unfortunately was damaged and could not be read by the scanner. The collapse of rodent populations due to the dry conditions in 2019 was the key driver of this dietary shift by feral cats. Even though feral cat densities on Yarraloola were reduced by the baiting program, those feral cats remaining placed heavy predation pressure on the northern quoll population. The extensive networks of drill pad tracks within the ranges/mesas on Yarraloola were likely to have facilitated access for feral cats to hunt prey in these rocky refuge sites. Many of the feral cat scats containing northern quoll remains were collected from Mesa G in 2019, which was recently subject to further exploration activity resulting in the addition of numerous tracks.

4.5 Future directions: strategic feral cat management

The future challenge is how to transition from the management of a bait naïve feral cat population to a feral cat population with an increasing number of bait smart adult males. A more strategic adaptive management approach that accounts for the unpredictable behaviour of feral cats is needed (Lohr and Algar 2020). A combination of aerial and targeted ground-baiting by hand may be more effective than uniform aerial baiting across the entire LMA. Creating feral cat “sinks” in areas less critical to threatened species, and in areas where feral cats prefer, such as lowland plains areas, could be achieved by targeted aerial baiting. Additionally, ground baiting in high density feral cat prey locations, such as along waterways, may increase exposure of feral cats to the baits. Complementing baiting with leg-hold
trapping is required to remove bait-shy individuals (Lohr and Algar 2020). A cost-saving option may be to avoid baiting altogether after high-rainfall periods as prey abundance will be high (e.g. influx of nomadic ground nesting birds) and feral cats are less likely to take baits. New audio and other types of prey cues designed to attract feral cats from further distances into areas with control devices could also be tested.
References

Algar DA, Angus GJ, Williams MR, Mellican AE (2007) Influence of bait type, weather and prey abundance on bait uptake by feral cats (Felis catus) on Peron Peninsula, Western Australia. Conservation Science Western Australia. 6, 109–149.

Algar DA, Onus M, Hamilton N (2013) Feral cat control as part of Rangelands Restoration at Lorna Glen (Matuwa), Western Australia: the first seven years. Conservation Science Western Australia. 8, 367–381.

Braithwaite RW, Griffiths AD (1994) Demographic variation and range contraction in the northern quoll Dasyurus hallucatus (Marsupialia: Dasyuridae). Wildlife Research. 21, 203–217.

Chapman J, Zdunic K (2019b) Yarraloo annual desktop fire regime monitoring, 2018. Department of Biodiversity, Conservation and Attractions, Kensington, WA.

King DR (1989) An assessment of the hazard posed to northern quolls (*Dasyurus hallucatus*) by aerial baiting with 1080 to control dingoes. *Australian Wildlife Research* 16, 569–574.

Appendices

Appendix 1 Field work program for 2019

<table>
<thead>
<tr>
<th>Trip</th>
<th>Date(s)</th>
<th>Field Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18 - 20 Feb Yarra</td>
<td>Helicopter radio-tracking for radio-collared cats. Alicia Whittington undertook the tracking.</td>
</tr>
<tr>
<td>2</td>
<td>3 – 15 Apr Yarra</td>
<td>Trials were undertaken to investigate methods to optimise the use of leg-hold traps for the capture of cats while excluding non-target species, particularly northern quolls. These experiments formed part of an Honour project for Hassan Abdi (Curtin University). Forty passive cat cameras were set and trialled as a possible alternative to lured cat cameras for monitoring in the future. RRK ranger involvement. (2 teams)</td>
</tr>
<tr>
<td>3</td>
<td>29 Apr– 3 May Yarra/Red Hill</td>
<td>Quoll cameras were set along trap lines and teams radio-tracked for collared cats. RRK rangers and a volunteer assisted. (2 teams)</td>
</tr>
<tr>
<td>4</td>
<td>21 May – 2 June Yarra</td>
<td>Cat trapping and collaring using ~84 cat trap sets. Five cats were trapped and collared. No non-target species were accidently captured. DBCA expert cat trapper Jason Fletcher supervised the trapping. Honours student Hassan Abdi assisted. Quoll cameras were collected from trap lines and quoll scats collected for diet study. All passive cat cameras were collected charged.</td>
</tr>
<tr>
<td>5</td>
<td>10 – 14 June Yarra/Red Hill</td>
<td>Setting of 120 camera traps for the monitoring of feral cats prior to baiting. RRK rangers assisted. Radio-tracking and downloading data from collared cats. (2 teams)</td>
</tr>
<tr>
<td>6</td>
<td>1 – 2 July Yarra</td>
<td>Heli-tracking of collared cats with help from Alicia Whittington from DBCA Karratha.</td>
</tr>
<tr>
<td>1 – 12 July Yarra/Red Hill</td>
<td>Eradicat® bait uptake experiment. Small radio transmitters were inserted into each bait. Baits laid in front of a camera. Individual baits were tracked each day to determine the fate of removed the baits and whether these baits were consumed. 120 cat cameras were collected and extra 1080 signage was installed. Predator scat surveys were undertaken on a quad bike on Yarraloola.</td>
<td></td>
</tr>
<tr>
<td>8 – 9 July Yarra</td>
<td>Aerial baiting of Eradicat® on Yarraloola Station. Western Shield baiting team and Shine aviation from Mt. Minnie. Alicia Whittington coordinated the operation.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>29 July – 2 Aug Yarra/Red Hill</td>
<td>Setting of 120 camera traps for the monitoring feral cats after the baiting. RRK rangers assisted. Radio-tracking feral cats and locating any dead cats. (2 teams)</td>
</tr>
<tr>
<td>8</td>
<td>1 - 16 Sept Yarra.</td>
<td>Quoll monitoring at 18 sites, trapped for four nights each. Collected sixty cat cameras. Predator scat surveys conducted. RRK rangers involved. (3 teams)</td>
</tr>
<tr>
<td>3 Sept Yarra</td>
<td>Heli-tracking of collared cats with help from Alicia Whittington from DBCA Karratha. Dead cats retrieved.</td>
<td></td>
</tr>
<tr>
<td>2 - 12 Sept Red Hill</td>
<td>Quoll monitoring at 18 sites, trapped for four nights each. Collected sixty cat cameras. Cats radio tracked. Predator scat collection. (3 teams)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2. Northern quoll capture results for 2019

Capture data and capture metric summaries for northern quolls per trapping site on the Yarraloola LMA

<table>
<thead>
<tr>
<th>Trap site</th>
<th>Females</th>
<th>Males</th>
<th>Total captures (includes recaptures)</th>
<th>Overall trap success rate (%)</th>
<th>Individuals captured per 100 trap nights</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>11.25</td>
<td>6.25</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>17.50</td>
<td>11.25</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>8.75</td>
<td>5.00</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5.00</td>
<td>3.75</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6.25</td>
<td>3.75</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>7.50</td>
<td>5.00</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>8.75</td>
<td>5.00</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5.00</td>
<td>2.50</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>4*</td>
<td>11</td>
<td>13.75</td>
<td>7.50</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>3*</td>
<td>11</td>
<td>13.75</td>
<td>5.00</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>10.00</td>
<td>6.25</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>16.25</td>
<td>10.00</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>#(1)</td>
<td>#(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>27</td>
<td>31</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Means</td>
<td>1.59</td>
<td>1.82</td>
<td>5.88</td>
<td>7.35</td>
<td>4.26</td>
</tr>
</tbody>
</table>

*Male (PIT 287571) was first captured at Line M Trap 12 (13/9), then moved to Line N Trap 1 (14/9), back to Line M Trap 6 (15/9) and then returned to Line N Trap 2 (16/9).

Line R was burnt by a hot fire in late December 2018. Eight traps were set for a single night resulting in the capture of one unmarked female and one unmarked male. The site was abandoned due to the lack of protective shelter for which to place traps. These captures were not included in the analysis.
Capture data and capture metric summaries for northern quolls per trapping site on Red Hill.

<table>
<thead>
<tr>
<th>Trap site</th>
<th>Females</th>
<th>Males</th>
<th>Total captures (includes)</th>
<th>Overall trap success rate (%)</th>
<th>Individuals captured per 100 trap nights</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>11.25</td>
<td>3.75</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2.50</td>
<td>1.25</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>2*</td>
<td>7</td>
<td>8.75</td>
<td>5.00</td>
</tr>
<tr>
<td>KB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>7</td>
<td>18</td>
<td>22.50</td>
<td>11.25</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7.50</td>
<td>2.50</td>
</tr>
<tr>
<td>PP</td>
<td>3</td>
<td>0*</td>
<td>9</td>
<td>11.25</td>
<td>3.75</td>
</tr>
<tr>
<td>RL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SW</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6.25</td>
<td>3.75</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>11.25</td>
<td>10.00</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>21</td>
<td>68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Means</td>
<td>0.83</td>
<td>1.17</td>
<td>3.78</td>
<td>4.72</td>
<td>2.50</td>
</tr>
</tbody>
</table>

*Male (PIT 289748) was first captured at Line L Trap 16 (4/9), then moved to Line PP Trap 11 (5/9) and a few days later was caught at Line J Trap 2 (8/9).
Appendix 3 Incidental and opportunistic records

From top then left to right for other panels: a) Pilbara olive python, b) Rothschild’s rock wallaby, c) *Egernia formosa*, d) Kaluta, e) Brush-tail possum
Appendix 4 Volunteer engagement 2019

<table>
<thead>
<tr>
<th>Name</th>
<th>Dates</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelia Catterick-Stoll</td>
<td>29 Apr – 3 May</td>
<td>54.5</td>
<td>Quoll camera trap setting, Yarraloola</td>
</tr>
<tr>
<td>Arlen Hogan-West</td>
<td>8 – 12 July</td>
<td>53.5</td>
<td>Cat camera collection, Yarraloola</td>
</tr>
<tr>
<td>Sam Edwards</td>
<td>2 – 12 Sept</td>
<td>94</td>
<td>Northern quoll cage trapping, Red Hill</td>
</tr>
<tr>
<td>Kate Rick</td>
<td>2 – 12 Sept</td>
<td>90</td>
<td>Northern quoll cage trapping, Red Hill</td>
</tr>
<tr>
<td>Ashleigh Johnson</td>
<td>2 – 16 Sept</td>
<td>130</td>
<td>Northern quoll cage trapping, Yarraloola</td>
</tr>
</tbody>
</table>
Appendix 5
TSOP outputs and engagement summary

Robe River Kuruma engagement

Table 3. Robe River Kuruma field staff involvement according to year and number of days worked during the TSOP. The number of field trips per year in parentheses.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year of TSOP Project</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>Arnold Bobby</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Brendon Bobby</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Eden Bobby</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eugene Evans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Joshua Evans</td>
<td>-</td>
<td>26 (3)</td>
</tr>
<tr>
<td>Nathan Evans</td>
<td>-</td>
<td>7 (2)</td>
</tr>
<tr>
<td>Royce Evans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaylean Sampi</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>John Shaw</td>
<td>-</td>
<td>15</td>
</tr>
</tbody>
</table>

Publications

Action 1 – Northern quoll Eradicat® cat bait uptake and survivorship study (2015)

Annual Reports

Scientific Papers

Action 2 – Introduced predator control program (2016–19)

Annual Reports

Scientific Papers (Review papers that include data on feral cat diets from this study)

Popular magazine articles

Student thesis