RioTinto

Finding better ways to provide the materials the world needs

Rio Tinto Metal Powders Products Brochure

Rio Tinto Metal Powders Powder Metallurgy Products

At Rio Tinto Metal Powders (RTMP, formerly QMP) we manufacture powder from iron that is entirely sourced from low residual ore. Because of this, our powders are exceptionally clean and consistent.

As a part of Rio Tinto, RTMP has production facilities in Sorel-Tracy, Quebec, Canada; and Suzhou, China. We produce iron, pre-alloyed, and diffusion and organic bonded grade powders. Our metal powders are helping customers in a variety of industries, including new applications for the energy transition market.

We have a full range of ferrous powder grades for virtually all powder metallurgy applications. Our high-quality powders can help you produce high-performance components. As your committed, long-term partner, RTMP offers you decades of technical expertise and knowledge as well as the significant resources and infrastructure of Rio Tinto, an international mining and metallurgical company.

Rio Tinto Metal Powders Process summary

About Rio Tinto and our operations

Rio Tinto is one of the world's leading metals and mining companies with a global workforce of **more than 50,000** and an extensive portfolio of operating assets spanning across Australia, Asia, North and South America, Europe, and Africa.

We mine ore to produce iron, aluminium, copper, molybdenum, gold, silver, tellurium, selenium, scandium, and industrial diamonds and minerals. Many of our materials are essential for the low-carbon transition, and for advancing human progress.

As a part of Rio Tinto, Rio Tinto Iron and Titanium (RTIT) has production facilities in Sorel-Tracy, Canada; Richard's Bay, South Africa; and Madagascar. Rio Tinto Metal Powders (RTMP) has an additional facility in Suzhou, China.

Sustainability

At Rio Tinto, sustainability is more than a catch phrase. Aligning our business strategy and daily practices around sustainability enables us to strengthen our operations and products, build enduring communities, and provide lasting benefit to customers, employees, and stakeholders.

Companywide, we have committed to achieving net zero emissions by 2050 and target a **15% reduction** of scope 1 and 2 emissions by 2025, with a 50% reduction by 2030*.

Our RTIT operations in Quebec are run entirely on renewable hydropower, and we are actively pursuing additional sustainability initiatives. We developed ilmenite smelting in Sorel-Tracy, Quebec in the 1950s and through a joint agreement with the Canadian Government, we are investing **\$537 million (C\$737 million) into reducing emissions at our RTIT operations by up to 70%**. Early in 2023, RTIT started our BlueSmelting[™] demonstration plant in Sorel-Tracy. The BlueSmelting[™] project involves an ilmenite reduction technology that **could produce 95% less greenhouse gas emissions (GHG)** than the current process. This innovative technology was developed by scientists at Rio Tinto's Critical Minerals and Technology Centre in Sorel-Tracy. The demo plant can process up to 40,000 tonnes of ilmenite per year, making it the largest in the world based on this type of technology. This would enable us to produce titanium dioxide, steel, and metal powders with significantly lower carbon footprints. Furthermore, our iron products, including metal powders, are generated from the residual iron of our smelting process to produce titanium dioxide, without the need for any additional mining.

The GHG reduction initiative at RTMP operations involves modernising control systems for more efficient gas consumption in annealing furnaces and converting three annealing furnaces from natural gas to electric.

Safety

Safety is our number one priority at Rio Tinto. Our goal is for everyone to go home safe at the end of each day. We have global safety standards which address key areas of risks, and they provide consistency in safety management and performance across our global operations and projects. Our businesses are audited internally against these standards and are expected to meet safety performance requirements and targets.

Our commitment to safety has enabled us to achieve a safety performance which is higher than the industry average for all injury frequency rates.

info.qmp@riotinto.com • www.qmp-powders.com

References

* Visit https://www.riotinto.com/en/sustainability/climate-change to learn more about Rio Tinto's sustainability commitments.

Additive Manufacturing

Metal additive manufacturing is going through a significant growth in capabilities with an increasing interest in industrial markets. Our mission is to help industries adopt this disruptive technology, even where cost is a key driver. Our low-cost ferrous water atomized powders are the real solution for industrial adoption of additive manufacturing.

Low-cost solutions for industrial applications Chemical composition

Grade	с	Mn	Мо	Cr	Ni	Si
ATOMET 1025	0,20-0,35	0,70-0,90	-	-	-	0,10-0,25
ATOMET 4340	0,38-0,43	0,60-0,80	0,20-0,30	0,70-0,90	1,60-2,00	0,10-0,25
ATOMET 4405	0,55-0,60	0,15-0,20	0,80-0,90	-	-	-

Range of mechanical properties based on the applied heat treatment

Additive Manufacturing

Examples of mechanical properties measured on LPBF samples

	ATOME	ET 1025	ATOME	ATOMET 4405	
Mechanical Properties	As-Built*	Annealed at 700 °C	As-Built**	Quench & Temper (200 °C)	As-Built*
Relative Density (%)	> 99,2	> 99,2	> 99.2	> 99,2	> 99,5
Ultimate Tensile Strength (MPa)	780 ± 11	530 ± 10	990 ± 8	1520 ± 8	1350 ± 26
Yield Strength (MPa)	755 ± 11	480 ± 7	900 ± 10	1220 ± 13	1240 ± 24
Elongation (%)	18 ± 1	35 ± 3	15 ± 3	9 ± 2	5 ± 1
Hardness (HRC)	30 ± 3	10 ± 2	43 ± 3	53 ± 1	50 ± 2

- Any supplementary or different post processing can result in different values. Results of other heat treatment are also available upon request.
- Parameters developed to obtain these results could be provided with the powders.
- * Printed 0° direction to z axis
- ** Printed 45° direction to z axis

We have you covered for different technologies!

Technology	PSD (µm)
Laser Powder Bed Fusion	18-53
Powder Bed Binder Jetting	18-53
Direct Energy Deposition	53-150
Cold Spray Additive Manufacturing	18-53
E-Beam Additive Manufacturing	53-150

ATOLUBE® Series

ATOLUBE® represents the next generation of lubricants for our press-ready premixes, specifically formulated to excel in both demanding and standard compaction applications. Whether you're tackling highdensity parts with complex geometries or handling standard compaction applications, our versatile ATOLUBE® series offers outstanding lubrication, ensuring smooth operations across a wide range of compaction processes.

CategoryApplicationATOLUBE®EBS wax for
standard premixesAW/PWStandard premixesATOLUBE®High performance lubricant for
fast and consistent flowATOLUBE®High performance lubricant for
fast and consistent flowATOLUBE®High performance lubricant for
high density application

This exclusive new series of lubricants tailored to meet the needs of both high-performance and everyday applications. This gives you the flexibility to choose the right solution for your production requirements.

ATOLUBE® AW

ATOLUBE[®] AW is our exclusive equivalent lubricant to EBS wax.

Basic physical powder mixes properties

AT 1001 HP + 0.70% Graphite + 1.80% Cu

Properties	Units	ATOLUBE [®] AW (0.70%)	EBS wax (0.70%)
Apparent density	g/cm ³	3.02	3.02
Hall flow rate	s/50g	35.9	38.4
Compaction pressure*	MPa	458	459
Green strength*	MPa	11.2	11.1

*At 7.00 g/cm³

Higher stroke rate provides increased productivity

Indicative results based on standard formulations. Individual results may differ based on specific process differences.

ATOLUBE® Series

ATOLUBE® SF

ATOLUBE® SF stands for Stable Flow, designed for fast and consistent flow, especially in hot and humid conditions. It is the high-performance lubricant in this series, providing efficient performance for bonded premixes (FLOMET®).

For demanding applications, ATOLUBE® SF performs optimally at elevated die temperatures (60-70°C), allowing for reduced lubricant content in high-density applications.

Our high-performance lubricants ensure smooth, efficient compaction even for tall components with challenging aspect ratios. This metal-free lubricant is the best choice for your demanding applications.

Properties	Units	0.50% ATOLUBE® SF	0.60% ATOLUBE® SF	0.75% EBS Wax
Apparent density	g/cm ³	2.87	2.86	3.00
Hall flow rate	s/50g	29.7	29.8	37.2
Compressibility*	MPa	465	470	440
Green strength*	MPa	12.8	12.8	11.7

AT 1001 HP + 0.70% Graphite + 1.80% Cu

*At 7.00 g/cm (Die Temperature 50 °C)

Ejection at RT

Compressibility (WDC at 50°C)

Ejection at 50°C

Indicative results based on standard formulations. Individual results may differ based on specific process differences.

Iron Grades

	ATOMET 24	ATOMET 25	ATOMET 28/29	ATOMET 1001	ATOMET 1001HP	
	For low and medium density PM applications. Very high green strength for more complex parts.	For low to medium density PM applications (6.2-6.5 g/cm³) requiring high green strength.	For medium density PM applications (6.4-6.8 g/cm ³). Low growth characteristics and high green strength.	For highest density PM applications (6,8-7,2 g/cm ³). High strength, high compressibility water atomized steel powder.	For soft magnetic PM applications which require an ultra pure steel powder. May be blended with ferro phosphorus for enhanced properties.	
Apparent density, g/cm ³	2,46	2,53	2,80/2,90	2,95	2,92	
Flow, s/50g	30	29	27	26	25	
Chemistry, wt%						
Fe	99+	99+	99+	99+	99+	
Mn	0,008	0,008	0,008	0,20	0,05	
Ni	-	-	-	-	-	
Мо	-	-	-	-	-	
Cr	-	-	-	-	-	
C	0,01	0,03	0,05/0,03	0,004	0,004	
0	0,15	0,18	0,14/0,20	0,08	0,05	
S	0,006	0,006	0,006	0,009	0,009	
Cu	-	-	-	-	-	
Particle Size Distribution, wt%						
+250 μm	Trace	Trace	Trace	Trace	Trace	
250/150 μm	4	3	5	10	14	
150/45 μm	71	67	73	65	66	
-45 μm	25	30	22	25	20	
Green Properties						
Density, g/cm³ at 600 MPa	6,90	6,95	7,00	7,10	7,15	
Green Strength, MPa	25	25	25	19	20	
Sintered Properties, g/cm ³	2% Cu, 0,8% C	2% Cu, 0,8% C	2% Cu, 0,8% C	2% Cu, 0,8% C	0,4-0,55%C	
Sintered Density, g/cm ³	6,70	6,70	6,70	7,00	7,00	
Transverse Rupture Strength, MPa	940	900	900	1240	700	
Hardness, HRB	79	80	82	92	50	
Tensile Strength, MPa	530	500	430	590	280	
Dimensional Change, % from die size	+0,22	+0,20	+0,27	+0.37	+0,20	

eat treated Properties *
Sintered Density, g/cm ³
Transverse Rupture Strength, MPa
Hardness, HRC
Tensile Strength, MPa

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

* Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

Iron Grades - Consumables

	ATOMET 57	ATOMET 56	ATOMET 68	ATOMET 86	ATOMET 1001 ASN/ ATOMET 1001HP ASN	ATOMET 195SP
	Coarse iron powder for alloying, chemical applications, cementation, and environmental remediation (PRBs, soil mixing, etc).	Coarse iron powder for alloying, chemical applications, cementation, and environmental remediation (PRBs, soil mixing, etc).	High purity coarse iron powder for welding, alloying, and other applications.	High purity iron powder for oxygen lance cutting, environmental remediation (Injection), and other applications.	Iron powder for various battery, energy storage, and other application .	High purity fine Iron powder (sub 45µm) for seed cleaning, pharmaceutical, magnetic additive, chemical, and other applications.
Apparent density, g/cm ³	-	3,70	3,27	2,90	3,10/3,21	3,07
Chemistry, wt%						
Fe	-	bal.	bal.	bal.	bal.	bal.
Mn	-	-	-	-	0,18/0,04	-
Ni	-	-	-	-	-	-
Мо	-	-	-	-	-	-
Cr	-	-	-	-	-	-
С	3,17	3,30	0,05	0,05	0,11/0,08	0,01
0	2,64	2,57	0,25	0,18	0,40	0,08
S	0,008	0,010	0,008	0,008	0,010/0,004	0,007
Cu	-	-	-	-	-	-

Particle Size Distribution, wt%

+600 µm	21	0,10	Trace
600/150 μm	55	72	57
-150 μm	24	27,9	43

+250 μm
250/150 µm
150/45 µm
-45 µm

Trace	Trace	Trace
6	11/15	Trace
71	59	2
23	30/26	98

Prealloyed Grades

	ATOMET 4001	ATOMET 4201	ATOMET 4401		ATOMET 4601	
	For high performance, high strength powder metallurgy and powder forging applications. High compressibility Mo-prealloy powder.	For improved as-sintered toughness and hardenability. High compressibility Ni-Mo prealloy powder.	For high density PM applications requiring extra strength and surface hardening for wear resistance. High compressibility Mo-prealloy powder.	For exceptional toughness and High compress prealloy powder	as-sintered hardenability. ibility Ni-Mo r.	
Apparent density, g/cm ³	2,94	2,93	2,93	2,91		
Flow, s/50g	25	26	25	25		
Chemistry, wt%						
Fe	bal.	bal.	bal.	bal.		
Mn	0,14	0,29	0,16	0,20		
Ni	-	0,46	-	1,80		
Мо	0,53	0,60	0,85	0,55		
Cr	-	-	-	-		
С	0,004	0,004	0,003	0,004		
0	0,10	0,10	0,08	0,10		
S	0,008	0,009	0,008	0,01		
Cu	-	-	-	-		
Particle Size Distribution, wt%						
+250 μm	Trace	Тгасе	Тгасе	Trace		
250/150 μm	12	13	13	11		
150/45 μm	66	66	66	66		
-45 μm	22	21	21	23		
Green Properties						
Density, g/cm³ at 600 MPa	7,10	7,05	7,10	6,95		
Green Strength, MPa	19	1,8	18	15,5		
Sintered Properties, g/cm ³	0,5%C	0,5%C	0,5%C	0,5%C		
Sintered Density, g/cm ³	7,00	7,00	7,00	7,00		
Transverse Rupture Strength, MPa	825	840	980	1030		
Hardness, HRB	72	76	79	77		
Tensile Strength, MPa	385	440	490	490		
Dimensional Change, % from die size	+0,19	+0,04	+0,15	+0,08		
Heat treated Properties *	0,4-0,55%C	0,4-0,55%C	0,4-0,55%C	0,4-0,55%C		
Sinter Hardened Properties **					1,0%Cu, 0,6%C	
Sintered Density, g/cm ³	7,10	7,05	7,10	6,95	6,95	
Transverse Rupture Strength, MPa	1500	1806	1805	1570	1480	
Hardness, HRC	39	37	32	41	33	
Tensile Strength, MPa	866	897	905	1105	850	
Dimensional Change, % from die size					+0,38	

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

* Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

** Sinter hardening: Cooling rate of 1,5°C/s from 650 to 400°C, tempered 60 minutes at 200°C.

Prealloyed Grades

	ATOMET 4701	ATOMET 4801	ATOMET 4901	
	Sinter hardening powder for high strength parts without oil quenching, induction hardening or other post-sintering heat treatments.	Sinter hardening powder for high strength applications requiring wear resistance. Optional tempering increases strength even further.	For the production high wear resistanc and superior dynar	of parts requiring e nic properties.
Apparent density, g/cm ³	2,96	2,91	2,99	
Flow, s/50g	26	25	24	
Chemistry, wt%				
Fe	bal.	bal.	bal.	
Mn	0,45	0,20	0,15	
Ni	0,90	4,00	-	
Мо	1,00	0,50	1,50	
Cr	0,45	-	-	
С	0,01	0,01	0,01	
0	0,21	0,10	0,10	
S	0,008	0,009	0,007	
Cu	-	-	-	
Particle Size Distribution, wt%				
+250 μm	Trace	Trace	Trace	
250/150 μm	14	10	12	
150/45 μm	66	66	66	
-45 μm	20	24	22	
Green Properties				
Density, g/cm ³ at 600 MPa	6,90	6,85	7,05	
Green Strength, MPa	16	11,5	1,3	
Sintered Properties, g/cm ³	0,5%C	0,5%C	0,5%C	
Sintered Density, g/cm ³	7,00	7,00	7,00	
Transverse Rupture Strength, MPa	1230	1220	1120	
Hardness, HRB	91	98	86	
Tensile Strength, MPa	620	610	570	
Dimensional Change, % from die size	+0,03	-0,05	+0,11	
Heat treated Properties *			0,4-0,55%C	
Sinter Hardened Properties **	1,0%Cu, 0,6%C	1,0%Cu, 0,6%C		1,0%Cu, 0,6%C
Sintered Density, g/cm ³	6,90	6,85	7,05	7,05
Transverse Rupture Strength, MPa	1620	1570	1405	1500
Hardness, HRC	35	33	44	27
Tensile Strength, MPa	875	850	995	725
Dimensional Change, % from die size	+0,30	+0,12		+0,35

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

* Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

** Sinter hardening: Cooling rate of 1,5°C/s from 650 to 400°C, tempered 60 minutes at 200°C.

DB10Cu

Diffusion bonded (DB) grades for improved part-to-part stability

Why DB grades?

- Improved dimensional stability
- Reduced segregation of fine constituents and improved homogeneity
- More controlled and stable production process
- Reduced scrap rate

Two families of grades

		Base	Base Nickel		
	DB46 AT. 4001 (0,5% Mo)		1,75 %	1,5 %	
Diffusion bonded base grades	DB48 AT. 4001 (0,5% Mo)		4 %	1,5 %	
	DB49	AT. 4901 (1,5% Mo)	4 %	2 %	
Copper rich diffusion bonded grade (to be added in premixes)	per rich ion ed grade added emixes) DB10Cu AT. 1001 (0% Mo)		0 %	10 %	

Weight normal distribution

Example of improved performance

DB10Cu	1001	20% DB10Cu	0,6% graphite	0,7% lube
Reg. Cu	1001	2% Reg. Cu	0,6% graphite	0,7% lube

• Production of 2500 parts of each mix

• Evaluation of weight and dimensional stability

Sintered O.D. normal distribution

— DB10Cu — Regular copper

Diffusion and Organic Bonded Grades

	ATOMET DB46	ATOMET DB48	ATOMET DB49	FLOMET F49-Cu	FLOMET F49-Ni
	Excellent consistency and dimensional control for high performance powder metallurgy applications.	For demanding applications requiring excellent consistency and dimensional control in parts.	For demanding applications requiring very high strength and dimensional control in parts.	For demanding applications requiring direct hardening and very high strength parts.	For demanding applications requiring excellent fatigue properties and dimensional control in parts.
Apparent density, g/cm ³	3,01	3,01	3,04	2,96	3,04
Flow, s/50g	24	24	24	30	31
Chemistry, wt%					
Fe	bal.	bal.	bal.	bal.	bal.
Mn	0,15	0,15	0,15	0,15	0,15
Ni	1,75	4,00	4,00	-	2,00
Мо	0,50	0,50	1,50	1,50	1,50
Cr					
С	0,005	0,006	0,02	0,01	0,01
0	0,09	0,09	0,09	0,1	0,1
S	0,008	0,008	0,008	0,007	0,007
Cu	1,50	1,50	2,00	2,00	-
Particle Size Distribution, wt%					
+250 μm	Тгасе	Trace	Тгасе	Тгасе	Trace
250/150 μm	12	12	12	12	12
150/45 μm	65	65	62	66	66
-45 μm	23	23	26	22	22
Green Properties					
Density, g/cm³ at 600 MPa	7,10	7,10	7,05	7,04	7,09
Green Strength, MPa	17	19	15	11	11
Sintered Properties, g/cm ³	0,5% C	0,5% C	0,5% C	0,7% C	0,6% C
Sintered Density, g/cm ³	7,00	7,00	7,00	7,00	7,00
Transverse Rupture Strength, MPa	1440	1590		1400	1325
Hardness	89 HRB	21 HRC	30 HRC	97 HRB	93 HRB
Tensile Strength, MPa	605	750		850	715
Dimensional Change, % from die size	+0,23	+0,04		+0,11	-0,11
Heat treated Properties *	0,4- 0,55%C	0,4- 0,55%C	0,4- 0,55%C		
	=+0	= 10			

near treated Properties	0,4-0,55%C	0,4-0,55%C	0,4-0,55%C
Sintered Density, g/cm ³	7,10	7,10	7,05
Transverse Rupture Strength, MPa	1400	1935	1680
Hardness, HRC	39	38	42
Tensile Strength, MPa	950	1150	985

Dimensional change, % from die size

All mixes contain 0,5% wax. Sintered in a 90% nitrogen based atmosphere at 1120°C for 25 minutes.

* Heat treatment: Austenitized for 15 minutes at 845°C. Oil quenched and tempered 60 minutes at 185°C.

SMC applications

Soft Magnetic Composites (SMC) represent a class of powder metallurgy products that are responsible for a transformation in the field of electric motors. SMC, which are Fe-based powders that have been coated with an electrically insulating coating, are now a material option available to motor designers.

Laminated steels and permanent magnets both have unique properties that are highly desirable. However, SMC with their low cost and high degree of flexibility for the fabrication of complex shaped parts, allow for the design of highly efficient motors with high torque density.

In some instances, replacing a laminated component with one made by SMC, formed into a more complex shape, can result in a significant decrease in the quantity of Cu wire used to have the motor turning. This change alone would directly translate into important weight and cost savings for the end user.

Non-moving components, such as cores, can also benefit from the unique properties conferred by SMC.

SMC properties

The mechanical and magnetic properties of a SMC can be adjusted by first selecting the proper material, by compacting it to the desired density, and then by performing the adequate thermal treatment. On that last point, SMC can be subdivided into two general families of materials; those which are heat treated and those which are steam treated; the later resulting in significantly higher strength but slightly higher losses.

Rio Tinto offers several SMC products in each of these categories. Technical representatives are available across the world to help you select the SMC material that is best suited for your application.

Heat treated SMC - low losses

				Typical Properties												
SMC	Density	_	TRS	Electrical	в (т)			н	π	otal Fe losse	s @ 1T [W/ko	9]	Total Fe losses @ 1,5T [W/kg]			
Product	[g/cm ³]	Treatment	[MPa]	Resistivity [µΩ·m]	10 kA/m	12 kA/m	µ max	[A/m]	50/60Hz	400Hz	1000Hz	2000Hz	60Hz	400Hz	1000Hz	2000Hz
514 0000	7,30 689MPa-60°C	515°C	45	1360	1,44	1,49	324	257	5,6 / 6,8	50	131	269	13	101	257	525
EM-300	7,41 827MPa-80°C	N ₂ -30min	29	1350	1,50	1,56	355	232	5,2 / 6,3	46	120	249	12	94	241	496
FN4 001	7,15 510MPa-60°C	530°C Air-N ₂ -30min	40	90	1,35	1,40	297	261	6,0 / 7,2	54	150	327	12	105	286	674
EM-301	7,43 758MPa-60°C	515°C N ₂ -30min	20	2100	1,49	1,54	309	232	5,2 / 6,3	46	122	250	12	95	245	515
-	7,37 758MPa-60°C	515°C	24	940	1,44	1,51	310	262	5,8 / 6,9	50	132	271	13	103	262	532
EM-106	7,43 827MPa-80°C	N ₂ -30min	40	120	1,50	1,56	335	258	5,6 / 6,8	51	140	312	13	105	282	617
	7,15 503MPa-60°C	480°C Air-N ₂ -30min	49	500	1,39	1,44	367	292	6,7 / 8,0	57	151	317	14	115	307	570
EM-501	7,30 696MPa-60°C	500°C N ₂ -60min	26	90	1,53	1,56	380	234	5,1 / 6,2	48	140	330	13	99	311	576

Heat treated SMC - low losses at very high frequencies and low applied field

						Typical Properties											
						в [Т]		Total Fe losses [W/kg]									
SMC	Density	Treatment	TRS	Electrical Resistivity	В		Hmax H.			@ 0,05 T			@ 0,1 T				
Product	[g/cm³]		[MPa]	[μΩ·m]	10 kA/m	12 kA/m	Pinax	(A/m]	r [A/m]	5kHz	10kHz	20kHz	30kHz	5kHz	10kHz	20kHz	30kHz
EM-301	7,30 758MPa-60°C	515°C N ₂ -30min	21	3850	1,48	1,53	465	257	4,5	10	26	47	15	38	91	164	

Steam treated SMC - high strength - low losses

						Typical Properties										
					в	171					Tota	l Fe losses [W	//kg]			
SMC	Density	Treatment	TRS	Electrical Resistivity			Umax	H		0	1 T			@ 1,5 T		
Product	[g/cm³]		[MPa]	[μΩ·m]	10 kA/m	12 kA/m	H max	Pillax [A/m]	P max [A/m]	50/60Hz	400Hz	1000Hz	2000Hz	60Hz	400Hz	1000Hz
EM-306	7,40 689MPa-60°C	Steam	143	510	1,55	1,61	540	276	5,9 / 7,0	50	144	320	14	113	286	

Steam treated SMC - high strength - high permeability

					Propert	ties										
						втті							Total Fe los	ses [W/kg]		
SMC	Density	Treatment	TRS [MPa]	Electrical Resistivity	D [1]		511		llmax			@1T		@ 1,5 T		
Product	[g/cm³]			[μΩ·m]	10 kA/m	12 kA/m	HIIIax	* [A/m]	^{lax} [A/m]	P 1114X [A/m]	50/60Hz	400Hz	1000Hz	60Hz	400Hz	1000Hz
EM-703	7,30 689MPa-60°C	Steam	165	1360	1,57	1,63	901	272	7,5 / 9,8	156	759	20	334	1192		

N.B.: Data shown reflects actual results obtained either by Rio Tinto or by independent external laboratories. Fluctuations of the order of +/- 5% are expected depending on the thermal/steam treatment parameters used.

ATOMET 5101

ATOMET 5101 is a water-atomized, low-alloy chromium steel powder engineered for medium to high-performance sintered components. It offers an excellent alternative to traditional nickel and copper-based alloys, delivering performance and cost-efficiency.

Key features

- Excellent compressibility
- High green strength
- Strong mechanical properties with graphite
- Enhanced with alloying elements if needed
- Stable, reliable ore source
- Cost-effective
- Advanced premix with improved lubricants

	Chemistry wt, %										
С	0	Cr	Mn								
<0,01	<0,2	1,80	<0,09								
Apparen	t density	Flo	w								
(g/c	:m³)	(sec/50g)									
2,7	70	30									
	Green stre	ength (MPa)									
Compactin (Ml	g pressure Pa)	0,3 ATOLUBE® AW + 0,4 ATOLUBE® SF									
80)0	3	0								

© Rio Tinto 2025. All Rights Reserved.

ATOMET 5101

Composition: ATOMET 5101 + graphite + 0,3% ATOLUBE® AW + 0,4% ATOLUBE® SF Sintered at 1130°C (2065°F) for 30 minutes

Transverse rupture strength

Composition: **indication** + 0,3% ATOLUBE[®] AW and 0,4% ATOLUBE[®] SF Sintered at 1130°C (2065°F) for 30 minutes

Tensile properties

Elongation (%)

Rio Tinto Metal Powders Worldwide Locations

